Пленочные наноструктуры.

Тонкие пленки находят широкое применение в различных областях науки и техники. Их роль в научно-техническом прогрессе чрезвычайно велика. Важнейшие задачи, решаемые пленочным материаловедением, - получение пленочных материалов с широким спектром свойств (электрофизических, механических), развитие методов синтезирования пленочных систем с наперед заданными свойствами.

Тонкие пленки - это особый вид состояния конденсированного вещества. По своей структуре и свойствам они могут существенно отличаться от своих массивных аналогов. Это обусловлено спецификой процесса их формирования: тонкие пленки получаются конденсацией молекулярных потоков вещества на поверхности твердого тела, называемого в этом случае подложкой.

Свойства тонких пленок являются производными их морфологии, атомной структуры, кристалличности и степени ее совершенства, которые, в свою очередь, определяются кинетикой процесса пленкообразования.

Тонкие пленки могут быть твердыми или жидкими (реже — газообразными). Состав, структура и свойства тонких пленок могут отличаться от таковых для объемной фазы, из которой образовалась тонкая пленка. К твердым тонким пленкам относятся оксидные пленки на поверхности металлов и искусственные пленочные покрытия, формируемые на различных материалах с целью создания приборов микроэлектроники, предотвращения коррозии, улучшения внешнего вида и т. п.

Жидкие тонкие пленки разделяют газообразную дисперсную фазу в пенах и жидкие фазы в эмульсиях; образование устойчивых пен и эмульсий возможно только при наличии ПАВ(поверхностно-активных в-в) в составе пленок. Жидкие тонкие пленки могут возникать самопроизвольно между зернами в поликристаллических твердых телах, если поверхностная энергия границы зерна превышает поверхностное натяжение на границе твердой и жидкой фаз более, чем вдвое (условие Гиббса–Смита). Газообразные тонкие пленки с заметным временем жизни могут возникнуть между каплей и объемной жидкостью в условиях испарения.

Определение толщины тонких пленок часто проводят методами, основанными на измерении интенсивности отраженного света, например, при помощи эллипсометрии; используют также электрические методы, основанные на определении емкости и проводимости тонких пленок. Для изучения твердых тонких пленок применяют электронную микроскопию, рентгеновскую спектроскопию и другие методы, разработанные для исследования поверхности твердых тел. Получение тонких пленок и тонкопленочных покрытий лежит в основе ряда современных областей техники, прежде всего микроэлектроники.

 

 

Тонкие пленки и их классификация.

Конденсированные объекты, в зависимости от их формы, геометрических размеров можно условно классифицировать на:

1) одномерные;

2) двухмерные;

3) трехмерные.

Одномерные объекты – микрочастицы конденсированной фазы (кластеры, островки, микрокапли), свойства которых зависят от их размера, по крайней мере, в 2-х направлениях.

Двухмерные -тонкие пленки и покрытия, свойства которых зависят от их размера в одном из направлений (толщины пленки или покрытия).

Трехмерные -твердые тела и жидкости в больших объемах, свойства которых не зависят от размеров тел. Например, плотность жидкости в ведре или стакане одинакова и поэтому жидкость в таком количестве следует рассматривать как трехмерный объект.

В зависимости от способа получения покрытий их разделяют на три группы:

1. Покрытия, формируемые из газовой фазы. В данную группу входят покрытия, осаждаемые из газовой фазы, генерация которой осуществляется, как правило, в результате:

а) ионного распыления вещества в вакууме;

б) испарения в вакууме;

в) проведения химических транспортных реакций;

г) пиролиза сложных химических соединений;

д) диспергирования полимеров или олигомеров в результате действия на них концентрированного потока энергии (электронов, ионов, электромагнитного излучения).

Образование покрытия происходит при взаимодействии частиц газовой фазы с поверхностью подложки.

2. Покрытия, формируемые из жидкой фазы. В эту группу входят:

а) лакокрасочные покрытия;

б) покрытия, образованные при монолитизации (затвердевании) расплавов вещества;

в) покрытия, осаждаемые из газокапельной фазы, например, методами плазменного, газопламенного, электродугового напыления;

г) пленки Лэнгмюра-Блоджет;

д) электролитические покрытия и т. д.

3. Покрытия, при осаждении которых в качестве исходного материала используются вещества в твердом состоянии. Они образуются, например, в результате припекания или приклеивания фольги, переноса вещества при трении и т. д.

В зависимости от природы материала различают следующие покрытия:

а) металлические;

б) полупроводниковые;

в) керамические;

г) полимерные;

е) композиционные, которые в свою очередь разделяют на однослойные, многослойные, комбинированные и т. д.

Процесс формирования тонких пленок является сложным процессом. Получение пленочных систем с заранее заданными свойствами связано с проблемой управления многими процессами, созданными при получении пленок. Ниже будут даны примеры получения пленочных наноструктур, их преимущества и недостатки:

Получение пленочных материалов: