рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Магнитное поле машины при нагрузке

Магнитное поле машины при нагрузке - раздел Производство, Синхронный генератор является основным типом генератора переменного тока, применяемым в процессе производства электроэнергии рис.3.1 При Нагрузке Машины (...

При нагрузке машины () обмотка якоря создает собственное магнитное поле. Поля якоря и индуктора, действующие совместно, образуют результирующее поле. Действие поля якоря на поле индуктора называется реакцией якоря. В синхронной машине реакция якоря зависит от величины и характера нагрузки генератора. В отличие от синхронной машины реакция якоря в машине постоянного тока определяется положением щеток относительно линии геометрической нейтрали.

Под линией геометрической нейтрали понимают линию, проходящую через ось вращения якоря в радиальном направлении посередине между двумя соседними полюсами.

Поперечная реакция якоря. При наличии тока в обмотке возбуждения и отсутствии тока в обмотке якоря () в машине существует только магнитное поле индуктора, картина которого изображена на рис. 4.8,а. Линия геометрической нейтрали 1–1 в этом случае одновременно является и линией физической нейтрали, так как индукция поля индуктора равна нулю в тех же точках на поверхности якоря, через которые проходит линия геометрической нейтрали.

При наличии тока в обмотке якоря и отсутствии тока в обмотке возбуждения () и установке щеток на линии геометрической нейтрали 1-1, ось поля якоря направлена по поперечной оси индуктора и называется поперечной реакцией якоря (рис. 4.8,б).

Если по обмоткам возбуждения и якоря протекают токи, то существуют одновременно поле индуктора и поле якоря. Как следует из рис. 4.8,в, поперечная реакция якоря вызывает ослабление поля под одним краем полюса и его усиление под другим, вследствие чего ось результирующего поля поворачивается в генераторе по направлению вращения якоря, а в двигателе -–в обратную сторону.

Под воздействием поперечной реакции якоря линия физической нейтрали поворачивается из положения 1-1 на некоторый угол b в положение 2-2, которое называется линией физической нейтрали. В генераторе физическая нейтраль повернута в сторону вращения якоря, а в двигателе – в обратную.

 

Рис. 4.8

 

Продольная реакция якоря.Если щетки сдвинуты с линии геометрической нейтрали на 90 эл. град. (рис. 4.8,г), то ось поля якоря направлена по продольной оси индуктора и называется полем продольной реакции якоря. Это поле в зависимости от направления тока якоря оказывает на поле индуктора намагничивающее или размагничивающее действие.

Общий случай.В случае, если щетки сдвинуты с геометрической

нейтрали на некоторый угол эл. град., в машине существуют как поперечная, так и продольная (намагничивающая или размагничивающая) составляющие реакции якоря.

Влияние реакции якоря на магнитный поток машины. Для оценки влияния реакции якоря необходимо рассмотреть распределения индукции магнитных потоков индуктора и якоря в воздушном зазоре, и на основе их провести анализ результирующего магнитного поля (рис. 4.9).

Рис.4.9

 

Распределение индукции магнитного поля индуктора (1) является симметричным относительно оси полюсов, близким к трапецеидальному. Распределение МДС обмотки якоря (2) имеет наибольшее значение на линии геометрической нейтрали, а по оси полюсов - равна нулю. Однако распределение магнитной индукции поля якоря (3) в зазоре совпадает с распределением МДС якоря лишь в пределах полюсных наконечников. В междуполюсном промежутке магнитная индукция поля якоря резко уменьшается, что объясняется большим магнитным сопротивлением.

Распределение индукции результирующего поля в воздушном зазоре получено путем суммирования распределений (1) и (3) и соответствует ненасыщенному состоянию магнитной цепи (4). Если магнитная цепь машины насыщена, то происходит не только искажение распределения индукции результирующего поля (5), но и уменьшение по величине.

Реакция якоря в машине постоянного тока оказывает отрицательное влияние. За счет искажения магнитного поля возрастает напряжение между соседними коллекторными пластинами, что ухудшает условия коммутации. В случае уменьшения индукции результирующего поля ухудшаются рабочие свойства машины: у генераторов снижается ЭДС, у двигателей уменьшается вращающий момент.

Эффективным средством борьбы с вредным влиянием реакции якоря является применение компенсационной обмотки. Компенсационная обмотка укладывается в пазы полюсных наконечников и включается последовательно с обмоткой якоря таким образом, чтобы ее МДС была противоположна по направлению МДС обмотки якоря . Компенсационная обмотка равномерно распределяется по поверхности полюсных наконечников главных полюсов.

При наличии компенсационной обмотки магнитное поле машины при переходе из режима холостого хода к нагрузке остается практически неизменным.

Однако компенсационная обмотка удорожает машину и усложняет ее конструкцию, поэтому применяется в машинах большой мощности, работающих с резкими колебаниями нагрузки.

– Конец работы –

Эта тема принадлежит разделу:

Синхронный генератор является основным типом генератора переменного тока, применяемым в процессе производства электроэнергии рис.3.1

Синхронной электрической машиной называется машина переменного тока в которой частота вращения ротора n равна частоте вращения магнитного потока... Синхронный генератор является основным типом генератора переменного тока... Синхронные двигатели в отличие от асинхронных двигателей имеют строго постоянную частоту вращения не зависящую от...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Магнитное поле машины при нагрузке

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Устройство и принцип действия синхронной машины
По своей конструкции синхронные машины подразделяются на явнополюсные и неявнополюсные (рис.3.2). Статор синхронной машины имеет такое же устройство, как и статор асинхронной машины и назы

Магнитное поле обмотки возбуждения синхронной машины
Явнополюсная машина. На рис. 3.3,а изображено магнитное поле обмотки возбуждения в воздушном зазоре явнополюсной синхронной машины на протяжении полюсного деления t. Распределение

Магнитное поле и параметры обмотки якоря
  При наличии тока в обмотке якоря синхронной машины возникает магнитное поле, действие которого на магнитное поле обмотки возбуждения называется реакцией якоря. Индуктор (ро

Продольная и поперечная реакции якоря
  Рассмотрим действие реакции якоря синхронного генератора при установившейся симметричной нагрузке (рис.3.5 – 3.7). Обмотка якоря изображена в виде упрощенной трехфазной обмотки, как

Магнитные поля и ЭДС продольной и поперечной реакции якоря
Продольная и поперечная составляющие тока якоря создают продольную и поперечную составляющие МДС якоря с соответствующими амплитудами:

Векторные диаграммы напряжений синхронных генераторов
Явнополюсная машина. Уравнение напряжения синхронного явнополюсного генератора имеет вид:  

Характеристики синхронного генератора
Рабочие свойства синхронного генератора оценивают его характеристиками, важнейшими из которых являются: характеристики холостого хода, трехфазного короткого замыкания, внешние, регулировочные, инду

Отношение короткого замыкания
Рис. 3.16 Отношением короткого замыкания ОКЗ

Диаграмма Потье
Этой диаграммой пользуются у неявнополюсных синхронных машин при определении тока возбуждения, необходимого для обеспечения заданного режима работы (

Порядок построения диаграммы Потье
1. Строится характеристика холостого хода (1); 2. По оси ординат откладывают вектор номинального напряжения

Условия включения генератора на параллельную работу
Необходимо выполнить следующие требования: 1. ЭДС включаемого генератора EГ должна быть равна напряжению сети Uc; 2. Частота генератора f

Изменение реактивной мощности. Режим синхронного компенсатора.
В случае, если выполнены все условия включения генератора на параллельную работу, ток якоря равен нулю, машина работает на холостом ходу. Если ток возбуждения генератора после синхронизации увеличе

Изменение активной мощности. Режим генератора и двигателя.
Чтобы включенная на параллельную работу машина вырабатывала активную мощность, работала в режиме генератора, необходимо увеличить механический вращающий момент на валу (рис.3.23,в). При этом возник

Синхронизирующая мощность (синхронизирующий момент) и статическая перегружаемость синхронных машин
Выше установлено, что в определенных пределах значений угла нагрузки синхронная машина способна сохранять

Работа синхронной машины при постоянной активной мощности и переменном возбуждении
Рассмотрим зависимость тока якоря I от тока возбуждения при

Элементы теории переходных процессов синхронных машин
При резких изменениях режима работы синхронной машины (подключение и отключение нагрузки, замыкание и размыкание электрических цепей обмоток, короткое замыкание и т.д.) возникают разнообразные пере

Гашение магнитного поля
При внутренних коротких замыканиях, в обмотке якоря синхронного генератора (рис.3.28), ток возбуждения про

Физическая картина явлений при внезапном трехфазном коротком замыкании синхронного генератора
Процесс внезапного короткого замыкания обмотки якоря в главнейших чертах аналогичен короткому замыканию в любой цепи переменного тока, например, внезапному короткому замыканию вторичной обмотки тра

Синхронные двигатели
В сравнении с асинхронными двигателями они имеют большие преимущества: 1. Могут работать с и не п

Синхронный компенсатор
Синхронные компенсаторы предназначены для повышения коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являетс

Исследование характеристик трехфазного синхронного генератора
Проводятся экспериментальные исследования синхронного генератора для получения и анализа следующих характеристик: холостого хода, нагрузочной, внешней, регулировочной, короткого замыкания.

Определение параметров трехфазного синхронного генератора
Проводится экспериментальное определение индуктивных сопротивлений синхронного генератора Xd, Xq, X2, X0. Сравниваются со значениями, полученными

Исследование синхронного реактивного двигателя
Проводятся опыты холостого хода и получения рабочих характеристик, анализируются результаты исследований.   КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ЛАБОРАТОРНОЙ РАБОТЫ &

Параллельная работа синхронного генератора с мощной сетью
Проводится включение синхронного генератора (СГ) на параллельную работу, снимаются зависимость тока якоря от активной нагрузки генератора, U-образные характеристики при различных значениях полезной

Устройство простейшей машины постоянного тока и принцип ее действия
На рис. 4.1 представлена простейшая машина постоянного тока. Неподвижная часть машины, называемая индуктором, состоит из полюсов и стального ярма, к которому прикрепляются полюсы. Назначением индук

Якорные обмотки машин постоянного тока
В современных машинах постоянного тока якорная обмотка укладывается в пазах на внешней поверхности якоря. Такие обмотки называются барабанными. Обмотки якорей подразделяются на петлевые

Петлевые обмотки
Простая петлевая обмотка. На рис.4.3, а и б представлены секции простой петлевой обмотки. Результирующий шаг простой петлевой обмотки равен

Волновые обмотки.
Простая волновая обмотка.На рис. 4.5,а и б представлены секции простой волновой обмотки. Результирующий шаг простой волновой обмотки равен

Магнитная цепь машины постоянного тока при холостом ходе
  При проектировании машины постоянного тока возникает необходимость определения зависимости основного магнитного потока

Коммутация
Процесс изменения тока в секции при переключении ее из одной параллельной ветви в другую называется коммутацией и может сопровождаться искрением на коллекторе. Причины, вызывающие искрение, подразд

Физическая сущность коммутации
Секция, в которой происходит коммутация, называется коммутирующей секцией, а время, в течение которого происходит процесс коммутации, называется периодом коммутации. На рис. 4.10,а,б,

Способы улучшения коммутации
На основе анализа формулы для определения добавочного тока возможны следующие пути улучшения коммутации: 1. Применение добавочных полюсов для создания коммутирующей ЭДС

ЭДС якоря
Среднее значение ЭДС, индуктируемой в одном проводнике обмотки якоря, равно , где

Электромагнитный момент
Электромагнитная сила, действующая на проводник с током в магнитном поле, равна   ,

Характеристика холостого хода
  Для генератора постоянного тока с независимым возбуждением характеристика

Внешняя характеристика
  Внешняя характеристика для генератора независимого возбуждения (1) предст

Регулировочная характеристика
Регулировочная характеристика для генератора независимого возбуждения (1) представлена на

Нагрузочная характеристика
Нагрузочная характеристика генератора независимого возбуждения (2) представлена на рис.4.

Характеристика короткого замыкания
Напряжение на клеммах обмотки якоря генератора равно

Параллельная работа генераторов постоянного тока
Параллельная работа генераторов обусловлена необходимостью бесперебойного питания потребителей, недостаточной мощностью одного генератора и т.д. Условия включения на параллельную работу:

Двигатели постоянного тока
Электрические машины обладают свойством обратимости, т.е. они могут работать как в режиме генератора, так и в режиме двигателя. По способу возбуждения двигатели постоянного тока подразделя

Пуск двигателей постоянного тока
  Возможны три способа пуска двигателя:   1. Прямой пуск; 2. Пуск при пониженном напряжении; 3. Пуск с помощью пускового реостата, включаемого

Регулирование частоты вращения и устойчивость работы двигателя
Возможны три способа регулирования частоты вращения: 1. Изменением потока возбуждения .

Рабочие характеристики двигателей постоянного тока
Эксплутационные свойства двигателей определяются его рабочими характеристиками, наибольший интерес из которых представляют зависимости частоты вращения n и вращающего момента М от пол

Торможение двигателей постоянного тока
При необходимости быстрой остановки или уменьшения частоты вращения осуществляют торможения двигателя. Торможение с использованием электромагнитного момента электрической машины называется электрич

Исследования генератора постоянного тока независимого возбуждения
Проводятся экспериментальные исследования для получения и анализа следующих характеристик: холостого хода, нагрузочной, внешней, регулировочной, короткого замыкания.   КОНТРО

Исследование генератора постоянного тока параллельного возбуждения
Проводятся экспериментальные исследования для получения и анализа следующих характеристик: холостого хода, нагрузочной, внешней, регулировочной.   КОНТРОЛЬНЫЕ ВОПРОСЫ ПР

Исследование двигателя постоянного тока параллельного возбуждения
Проводятся экспериментальные исследования для получения и анализа рабочих, механических, скоростных, регулировочных характеристик.   КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ЛАБОР

Исследование двигателя постоянного тока последовательного возбуждения
Проводятся экспериментальные исследования для получения и анализа рабочих, механических, скоростных, регулировочных характеристик.   КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ЛАБОР

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги