Типовые процессы солевой технологии

 

Большинство МУ представляет различные минеральные соли или твердые вещества с подобными солям свойствами. Технологические схемы производства минеральных удобрений весьма разнообразны, но в большинстве случаев складываются из одних и тех же типовых процессов, свойственных солевой технологии, цель которой – разделение сложных систем, состоящих из нескольких солевых компонентов.

Переработка минерального сырья в соли (и в минеральные удобрения) может идти или его высокотемпературной обработкой, или «мокрым» путем в жидких средах и суспензиях. В соответствии с этим, помимо обычных процессов подготовки сырья к переработке (измельчение, классификация ,обогащение, сушка), в солевой технологии особое значение имеют два типа процессов:

- термическая или термохимическая обработка, то есть различные виды обжига сырья или шихты;

- растворение и перекристаллизация веществ, связанные с их химической обработкой, разделением и очисткой растворов от примесей.

 

4.3.1 Обжиг

 

Обжигом называют процесс термической обработки материалов, заключающийся в нагреве их до заданной температуры, выдержке при этой температуре и охлаждении. При обжиге, в зависимости от условий процесса, протекают реакции термического разложения, окисления или восстановления, образования и полиморфных превращений минералов. В соответствии с протекающими при обжиге химическими превращениями различают:

- кальцинационный обжиг (кальцинация), цель которого – удаление из вещества летучих компонентов, чаще всего оксида углерода (IV) и конституционной воды, например:

обжиг известняка:

 

CaCO3 = CaO + CO2,

 

или дегидратация гидроксида алюминия до его оксида:

 

2Al(OH)3 = Al2O3 + 3H2O;

 

- окислительный обжиг, цель которого - повышение степени окисления элемента, например:

2FeO + O2 = 2Fe3O4

 

или превращение сульфида в оксид:

 

CuS + 1,5O2 = CuO + SO2;

- восстановительный обжиг, цель которого - понижение степени окисления элемента, например:

получение элементарного фосфора:

 

Ca3(PO4)2 + 5C + 3SiO2 = P2 + 5CO + 3CaSiO3.

 

Частный случай обжига – спекание сырья с какими-либо реагентами с целью образования растворимых, извлекаемых из сырья продуктов, например, спекание фторапатита с содой:

 

Ca5(PO4)3F + 2Na2CO3 + SiO2 =

=3CaNaPO4 + Ca2SiO4 + NaF + 2CO2.

 

Обжиг и спекание представляют собой гетерогенные процессы, в которых реакции протекают в системах «Т + Т», «Ж + Ж» и «Т + Г», где газообразная и жидкая фазы образуются за счет диссоциации и плавления твердой фазы. Поэтому скорость процессов обжига и спекания зависит как от скорости химической реакции, так и скоростей возгонки, плавления и диффузии твердых, жидких и газообразных веществ через фазы, образованные реагирующими компонентами и продуктами их взаимодействия.

Скорость процессов обжига и спекания может быть увеличена за счет повышения температуры, измельчения компонентов обжигаемого материала, повышения их концентрации, перемешивания и создания условий, при которых один из компонентов будет находиться в жидком и газообразном состоянии.

 

 

4.3.2 Растворение и выщелачивание

 

Растворением твердого тела называется процесс разрушения его кристаллической структуры под воздействием растворителя с образованием гомогенной системы – раствора.

Растворение может быть физическим, когда возможна обратная кристаллизация растворенного вещества из раствора по схеме

А + Р Û АР Û Р + А,

 

и химическим, когда растворитель или содержащийся в нем реагент химически взаимодействует с растворяемым веществом и делает невозможным его обратную кристаллизацию, то есть по схеме

 

А + Р = ВР + Р,

 

где: А растворяемое вещество;
  Р растворитель;
  В новое вещество, образовавшееся в результате растворения.

 

Очевидно, что процесс химического растворения, в отличии от процесса физического растворения, является необратимым.

Растворение представляет гетерогенный некаталитический процесс, протекающий в системе «Т + Ж» в диффузионной области.

Процесс растворения ускоряется при повышении температуры, измельчении твердой фазы, перемешивании и увеличении концентрации. В случае физического растворения движущей силой процесса является разность концентраций ΔС = (СН – С), поэтому скорость его определяется уравнением

 

UФ = КР · F(СН – С), (4.2)

 

где Kp коэффициент скорости растворения;
  F площадь поверхности кристаллов растворяемого вещества;
  С концентрация растворяемого вещества в жидкой фазе;
  СН концентрация насыщенного раствора при данной температуре.

 

Очевидно, что по мере растворения разность концентраций (СН – С) убывает и процесс растворения замедляется.

Различные случаи химического растворения подчиняются различным кинетическим закономерностям. В наиболее простом случае, когда реакция протекает только на поверхности твердого тела, скорость химического растворения может быть выражена уравнением

 

UФ = КР · F · СР ,(4.3)

 

где K коэффициент, зависящий от температуры, гидродинамических и других условий растворения;
  Ср концентрация активного реагента в растворителе.

 

Частный случай растворения – выщелачивание. Это процесс извлечения (экстракции) жидким растворителем твердого компонента из системы, состоящей из двух и большего числа твердых фаз. Как и растворение, выщелачивание может быть физическим и химическим. Скорость выщелачивания зависит от структуры материала и тем выше, чем больше доля растворимой фазы в нем, больше поверхность и крупнее поры в выщелачиваемом материале.

 

 

4.3.3 Кристаллизация из растворов и другие процессы

 

Кристаллизацией называют процесс выделения твердой фазы (кристаллов) из растворов, происходящий при перенасыщении их по отношению к образующейся твердой фазе. В зависимости от приема, с помощью которого достигается перенасыщение раствора, различают два вида кристаллизации: политермическую и изотермическую.

При политермической кристаллизации пересыщенный раствор образуется за счет охлаждения системы. Этот процесс протекает при переменной температуре (Т ≠ const.). Метод применим для кристаллизации веществ, растворимость (L) которых существенно возрастает при повышении температуры.

При изотермической кристаллизации пересыщенный раствор образуется в результате выпаривания части растворителя. Этот процесс протекает при постоянной температуре (Т = const.). Метод применим для кристаллизации веществ, растворимость которых мало зависит от температуры.

Частным случаем кристаллизации является высаливание, т.е. процесс выделения твердой фазы путем введения в концентрированный раствор веществ, понижающих растворимость растворенного вещества.

Из других типовых процессов, используемых в солевой технологии, наибольшее значение имеют операции разделения солей, находящихся в твердых смесях или растворах. Помимо описанных выше процессов кристаллизации и выщелачивания, к ним относятся: ионный обмен, экстракция веществ неводными растворителями, флотация, гидросепарация и некоторые другие. Эти процессы рассматриваются ниже при изучении конкретных производств.