Современное состояние электроэнергетики и перспективы развития

В 1992 г. в соответствии с указами Президента РФ NN 922 и 923 электроэнергетика России была преобразована в единое акционерное общество РАО «ЕЭС России» (Единая энергетическая система России) без включения в него атомных станций. Правительство России продолжает оставаться главным акционером компании. К концу 2000 г. доля государства в акционерном капитале компании составляла 52,6%. Рисунок 2.2.1 иллюстрирует структуру электроэнергетического сектора в 2000 г. План реструктуризации, одобренный в середине 2001 г., должен привести к изменению структуры РАО «ЕЭС России» и «Росэнергоатома» [7].

В 2000 г. установленная генерирующая мощность РАО «ЕЭС России» составила 156.2 ГВт или 73 % суммарной установленной мощности в России. В состав компании входят:

ü

ü 72 из 74 региональных АО-энерго, поставляющих электро- и теплоэнергию, в том числе:

∙ в 34 РАО «ЕЭС России» имело более 51 % голосующих акций;

∙ в 36 РАО «ЕЭС России» имело от 25 % до 49 % голосующих акций130;

∙ в 2 РАО «ЕЭС России» имело менее 25 % голосующих акций.

ü тепловые электростанции (мощностью более 1 Мвт), на долю которых приходится 78 % установленной тепловой мощности в России (122,4 Мвт);

ü гидроэлектростанции (мощностью более 300 Мвт), на долю которых приходится 22 % установленной мощности ГЭС в России (33,8 Мвт);

ü национальная сеть (все линии электропередач напряжением 330 кВ и выше);

ü Центральное диспетчерское управление, контролирующее сети региональных энергосистем и независимых акционерных

обществ;

ü 57 научно-исследовательских и проектных института; строительных, сервисных, ремонтных и других компаний

На территории России расположено семь объединенных энергосистем (ОЭС). Почти 75 % российской электроэнергии производится тремя из названных энергосистем: ОЭС Урала, ОЭС Сибири и ОЭС Центра. Виды потребляемого первичного топлива для производства электроэнергии значительно дифференцируются по регионам (табл.2.2.1). Производство электроэнергии на атомных электростанциях получило наибольшее развитие в ОЭС Северо-Запада (41 %), далее следуют ОЭС Центра и ОЭС Средней Волги, на долю каждой из которых приходится в среднем около 25 % от суммарного объема электроэнергии, произведенной на АЭС. На долю гидроэлектростанций (ГЭС) приходится почти половина выработки электроэнергии в ОЭС Сибири и почти четверть - в ОЭС Средней Волги и ОЭС Востока, на долю тепловых станций - 70-90 % производства электроэнергии в ОЭС Урала, ОЭС Северного Кавказа и ОЭС Востока и более половины - в ОЭС Сибири, ОЭС Средней Волги и ОЭС Центра (табл.2.2.1).

Россия является четвертым крупнейшим производителем электроэнергии в мире после США, Китая и Японии. В 1998 г. в России было произведено 827 млрд. кВт∙ч против 1082 млрд. кВт∙ч в 1990 г. В 1999 г. выработка электроэнергии увеличилась примерно на 2 % и достигла 846 млрд. кВт∙ч. По предварительным данным за 2000 г. значение данного показателя составило 876 млрд. кВт∙ч, что на 4 % выше уровня 1999 г.

 

Таблица 2.2.1

Производство электроэнергии различными типами электростанций в 2000 г. по объединенным энергосистемам (в %)

 

Структура потребления топлива для производства электроэнергии, в том числе на электростанциях с совместным производством электроэнергии и тепла

(ТЭЦ), в течение периода времени между 1990 и 1999 г.г. оставалась относительно неизменной при незначительном росте доли угля за счет уменьшения доли мазута (табл.2.2.2). В 1999 г. на долю природного газа приходилось 42 % от общего объема произведенной электроэнергии, за ним следовали уголь (19 %), гидроэнергия (19 %), атомная энергия (14 %) и нефть (5 %). Доля электроэнергии, произведенной на базе использования возобновляемых источников (за исключением гидроэнергии) составляла менее 0,2 %. В течение всех 90-х годов на долю природного газа при производстве электроэнергии и тепла приходилось около 64 % от общего объема потребляемого топлива, при этом доля мазута за данный период времени упала с 16 % до 7 %, а доля угля возросла примерно с 20 % до 29 %.

 

 


Таблица 2.2.2

 

Производство электроэнергии по видам топлива и источникам энергии

(млрд. кВт∙ч)


В результате экономического спада, начавшегося в 1990 г., конечное потребление электроэнергии в 1998 г. уменьшилось более, чем на 30 % - до 579 млрд. кВт∙ч. Потребление электроэнергии сократилось во всех секторах экономики за исключением коммунально-бытового сектора, где к настоящему времени оно возросло на 26 % (табл. 2.2.3). Впервые после 1990 г. общий спрос на электроэнергию возрос в 1999 г. до 593 млрд. кВт∙ч, а уровень потребления в 2000 г. оценивается в 614 млрд. кВт∙ч., т.е. рост составил почти 4 %. Интересно отметить, что потери электроэнергии в России при ее производстве и передаче составляют почти 20 %, что на 8 % выше, чем в среднем в странах ОЭСР. Кроме того, потери электроэнергии при ее передаче превышают количество электроэнергии, потребляемое электростанциями.

Таблица 2.2.3

Электроэнергетический баланс Российской Федерации, млрд. кВт∙ч

В течение всех 90-х годов величина суммарной установленной мощности для производства электроэнергии в России оставалась примерно на одном уровне. В начале 2001 г. этот показатель составил 214 млн. кВт, из которых 69 % приходилось на тепловые станции, 21 % - на гидроэлектростанции и 10 % - на атомные станции. К началу 2000 г. на территории России функционировало около 500 тепловых электростанций, более 90 гидростанций и 29 промышленных атомных реакторов. Электрические сети объединяют почти 2,7 млн. км линий электропередач и магистральных распределительных линий, включая более 150 тыс. км высоковольтных линий напряжением от 220 до 1150 кВ.

Из общей величины суммарной установленной мощности около 190 млн. кВт рассматривается в качестве располагаемой мощности, в том числе 175 млн. кВт – используемой в балансе. В настоящее время пиковая нагрузка системы составляет около 145 млн. кВт. Средний уровень использования мощностей 1998 г. был равен 44 %. По оценкам РАО «ЕЭС России» в 1999 г. свободная мощность достигла 30 млн. кВт. Наличие относительно низкого уровня располагаемой мощности связано с низким уровнем их технического обслуживания и капитального ремонта, а также с недостатком инвестиций в течение 1990-х годов. Около 40 % установленной мощности находится в эксплуатации более 25 лет. Оценки российских экспертов, говорящие об использовании очень старого оборудования, основаны на том факте, что большая часть электрических сетей и инфраструктуры была введена в строй задолго до 1975 г.

Россия является нетто экспортером электроэнергии, как в страны СНГ, так и дальнего зарубежья. В 1999 г. экспорт электроэнергии достиг 22,5 млрд. кВт∙ч, что составило 2,7 % от общего объема ее производства в России. За 1993-1998 г.г. нетто экспорт составил в среднем 18-20 млрд. кВт∙ч в год, из которых 2/3 направлялись в страны СНГ. В 1999 г. объем экспорта электроэнергии на Украину и в Казахстан, являющиеся самыми крупными российскими потребителями, резко сократился в связи с неплатежами. Экспорт электроэнергии в страны дальнего зарубежья поддерживается на одном уровне и в некоторых случаях возрастает.

Таблица 2.2.4

Нетто экспорт электроэнергии (млрд. кВт∙ч)

28 августа 2003 года за номером № 1234-р распоряжением правительства РФ, была утверждена новая редакция «Энергетической стратегии России до 2020 года» [8]. Энергетическая стратегия России формировалась под долгосрочную программу социально-экономического развития страны, причем основной сценарий соответствовал ежегодному росту экономики в среднем на 5–5,5 % за 20-летний период. Наряду с этим проработан и менее опти­мистичный (пониженный) сценарий с тем, чтобы быть готовым к разного рода неприятностям.

Рассматривая широчайший круг актуальных вопросов долгосрочного развития энергетики страны. Энергетическая стратегия вместе с тем вы­делила три ключевые задачи, на решение которых направлены все усилия и которые концентрируют суть энергетической политики страны.

Первая задачакоренное повышение энергетической эффективности экономики с тем, чтобы энергоемкость валового внутреннего продукта (ВВП) сократилась на 30–33 % в период до 2010 г. и еще на 30 % в после­дующие годы. Очень амбициозная задача, но из-за нашей энерге­тической расточительности даже при ее успешном решении удельная энер­гоемкость российской экономики в 2020 г. лишь достигнет сегодняшнего среднемирового показателя, но отнюдь не показателей лучших стран,

Первым и важнейшим средством повышения энергетической эффек­тивности является структурная перестройка экономики. Россия не осилит 5 %-ные темпы роста при сохранении современной тяжелой, энергоемкой структуры экономики, ориентированной на отрасли первого передела. Необходимо развивать высокотехнологичные отрасли и сферу услуг с тем, чтобы из 5–5,5 % среднегодового роста ВВП почти полови­ну (2,3–2,7 %) обеспечивать за счет структурной перестройки экономики. Это колоссальная задача для всей экономики страны и ее решение, как говорилось выше, напрямую связано с радикальным расширением ис­пользования особых физических свойств электроэнергии.

Реализация освоенных в отечественной и мировой практике организационных и технологических мер экономии энергоресурсов способна уменьшить современный их расход в стране на 40–45 % или на 360–430 млн т у.т. в год. Большая и двоякая роль в этом отведена электроэнергетике. Во-первых потенциал экономии электроэнергии в целом по России со­ставляет более четверти ее современного потребления, что с учетом расхо­да топлива на ее производство составляет 20 % общего потенциала энерго­сбережения. Во-вторых, сегодня средний КПД электростанций (около 35 %) настолько ниже лучших технологических достижений (до 60 %), что в самом производстве электроэнергии возможности экономии топлива дос­тигают 25 % общего потенциала энергосбережения. Таким образом, в сум­ме совершенствование электроэнергетики призвано реализовать до 45 % всех организационно-технологических мер экономии энергоресурсов.

Вторая коренная задача Энергетической стратегии – как обеспе­чить ожидаемое наращивание потребления первичных энергоресурсов и их экспорт. При росте энергопотребления с темпом 1,4–1,6 % ежегодно и почти стабильном экспорте энергоресурсов (рост не более чем на 10 % за период) требования к наращиванию производственной базы энергети­ки на первый взгляд оказываются вполне приемлемыми – 11 % в пери­од до 2010 г. и 23 % за весь период до 2020 г. Но специалисты отлично знают, что в этот период потребуется восстановить до 80 % ресурсной базы и заменить не менее 70 % существующего оборудования, т.е. за это 20-летие произойдет массовое выбытие всего, что создавалось при взле­те экономики в 60–80-е годы прошлого века. Восстановление и наращивание производственной базы ТЭК потребует огромных затрат – более 500 млрд. дол. за 20-летний период.

Третья задача стратегии – обеспечить энергетическую безопас­ность, которой грозит стремительное скатывание страны к моногазовой структуре топливно-энергетического баланса. Доля природного газа в энер­гопотреблении России составляла 40 % в 1990 г. и за последние 10 лет она достигла почти 50 %. Если продолжится та же линия безудержного ис­пользования якобы дешевого газа, то возникнет предельно опасная ситуа­ция. Она уже четко обозначилась тем, что 80 % котельно-печного топлива (не включающего светлые нефтепродукты) в европейской части страны составляет газ и при этом через Урал из Сибири в европейскую часть страны ежегодно проходит почти 1 млрд. т топлива.

Напряженность положения показывает сравнение с Европейским сою­зом. Он ограничивает 30 % поступление любого ресурса из одного источ­ника, а европейская часть России (включая Урал) 75 % топлива получает из одного источника с дальностью транспортировки до 3000 км. Ситуа­цию нужно менять, хотя это очень дорого. Поэтому вместо самого привлекательного для потребителя экологически чистого топлива - газа не­обходимо будет использовать уголь и ядерную энергию.

Однако масштабная взаимозаменяемость главных энергоресурсов осу­ществима только в производстве электроэнергии и поэтому именно элек­троэнергетика должна внести основной вклад в обеспечение энергетиче­ской безопасности страны. Наряду с относительно дешевыми и высоко­эффективными газомазутными ТЭС здесь придется во все больших мас­штабах использовать пылеугольные ТЭС и АЭС, которые в 2,5–3 раза дороже по инвестициям.

Благодаря этому структура установленной мощности и производства электроэнергии в России изменится в пользу нетопливных электростанций (АЭС и ГЭС, см. табл. 2.2.5), а увеличение использования угля позволит практически стабилизировать расход газа электростанциями (табл. 2.2.6).

Главная проблема, которую пришлось решать при разработке Энерге­тической стратегии – откуда взять средства (источники финансирова­ния) для крупномасштабного энергосбережения, замещения выбываю­щих и наращивания новых производственных мощностей ТЭК и измене­ния в интересах энергетической безопасности структуры топливно-энергетического баланса страны. Ответ состоит в неизбежном повышении цен на энергию и в налоговом стимулировании инвестиций.

Таблица 2.2.5

Рациональные варианты развития генерирующих мощностей

 

Показатель Пониженный Благоприятный
Установленная мощность, млн. кВт 206,7
В том числе                  
ГЭС 44,3
АЭС 21,2
ТЭЦ 77,1
КЭС 64,0
Производство электроэнергии, млрд.кВт·ч
В том числе                  
ГЭС
АЭС
ТЭЦ
КЭС