рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Уравнения теплообмена массива с вентиляционной струей в шахтной выработке

Уравнения теплообмена массива с вентиляционной струей в шахтной выработке - раздел Производство, ТЕРМОДИНАМИЧЕСКИЕ И ГАЗОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ГОРНОГО ПРОИЗВОДСТВА   При Проветривании Возможны Следующие Случаи Взаимодейст­Вия В...

 

При проветривании возможны следующие случаи взаимодейст­вия вентиляционной струи в шахтной выработке с окружающим мас­сивом:

• стационарный режим теплообмена;

• нестационарный режим теплообмена.

Стационарный режим теплообмена имеет место в том случае, если вентиляция выработок непрерывна. При этом температура воз­душной струи и стенки выработки в заданном ее сечении остаются постоянными, но изменяются по длине выработки.

Если же проветривание подземных выработок осуществляется не постоянно или же с периодическим реверсированием вентиляци­онной струи, то имеет место нестационарный режим теплообмена. В этом случае температура воздушной струи и стенки выработки изме­няются не только по длине выработки, но и во времени в любом заданном ее сечении.

Рассмотрим в начале наиболее простой случай теплообмена -стационарный.

Коэффициент теплоотдачи от вентиляционной струи к массиву (при его охлаждении на глубоких горизонтах), или же от массива к вентиляционной струе (при проветривании выработок, пройденных в многолетнемерзлых породах) при стационарном режиме постоянен в заданном сечении выработки и меняется только по ее длине. При нестационарном он меняется и по длине выработки и во времени в любом сечении выработки.

Оценка температурного поля вокруг выработки при нестацио­нарном теплообмене будет учтена поправками к коэффициенту не­стационарного теплообмена ατ.

Так как форма выработки на параметры теплообмена практиче­ски не влияет, то для удобства аналитического описания процесса теплообмена ее форму примем цилиндрической.

Таким образом, имеем выработку круглого сечения радиусом Rв. Температуру вентиляционной струи в заданном сечении выра­ботки обозначим через Тв. Температура породного массива во всех его точках в начальный момент проветривания будет одинакова, обозначим ее через Т0.

Другие обозначения примем следующие: λ — теплопроводность породы, Вт/(м -К); а — температуропроводность породы, м /с; α — коэффициент стационарного теплообмена, Вт/ (м∙К); τ — перемен­ная времени, с; r — переменная радиуса, начиная с оси выработки, м; Т — переменная температуры, К.

В принятой постановке для нахождения температурного поля вокруг цилиндрической выработки при стационарном режиме тепло­обмена необходимо решить дифференциальное уравнение теплопро­водности в цилиндрических координатах

(4.3)

при следующих начальных

(4.4)

и граничных условиях

(4.5)

(4.6)

где Тс — температура стенки выработки, К.

Решение дифференциального уравнения (4.3) при начальных и граничных условиях (4.4)-(4.6) имеет вид:

(4.7)

где - безразмерная температура для случая охлаждения массива вокруг выработки и

— для случая его нагрева;

— бесселевы функции первого и второго рода соответственно нулевого и первого порядка;

s — переменная Лапласа при замене функции f(τ) ее изображением F(s) в преобразованиях Лапласа

— критерий Фурье;

- критерий Био.

При r = Rв безразмерная температура стенки выработки θс при стационарном режиме теплообмена согласно (4.7) будет равна

(4.8)

В начальный момент , а при

При бесконечно больших значениях коэффициента теплоотда­чи а, т.е. при очень больших значениях критерия Био (Вi → ∞) урав­нение (4.7) принимает вид:

Для оценки температурного поля в массиве при нестационарном режиме теплообмена в решение (10.7) вместо критерия Био необхо­димо подставить критерий Кирпичева, который равен

(10.9)

где ατкоэффициент нестационарного теплообмена, Вт/(м2∙К). Пользоваться решениями для оценки θ и Ки в практических расчетах весьма затруднительно, поэтому решения (4.8) и (4.9) в виде номограмм приведены на рис. 4.1 и 4.2.

Рис. 4.1.Номограмма для определения безразмерной температуры стен шахтных выработок

Рис. 4.2. Номограмма для определения безразмерного коэффициента нестацио­нарного теплообмена (критерия Кирпичева) между горным массивом и рудничным воздухом

– Конец работы –

Эта тема принадлежит разделу:

ТЕРМОДИНАМИЧЕСКИЕ И ГАЗОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ГОРНОГО ПРОИЗВОДСТВА

Государственное образовательное учреждение... высшего профессионального образования... Кольский филиал Петрозаводского государственного университета...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Уравнения теплообмена массива с вентиляционной струей в шахтной выработке

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Термодинамические параметры земной коры
  Верхняя толща горных пород Земли называется земной корой. Земная кора простирается от поверхности Земли до границы Мохоровичича, которая отделяет земную кору от мантии Земли. Мощ­но

Источники тепла земных недр
  Тепловое поле земной коры формируется в результате процесса теплообмена при наличии источников тепла. Теплообмен в земной коре осуществляется посредством теплопроводности, конвекции

Процессы теплопереноса в недрах Земли
  Как было отмечено ранее, теплообмен в горных породах осуществляется теплопроводностью, конвекцией и излучением. Применительно к задачам горного производства весьма важной является з

Использование тепла земных недр
  Геотермальные ресурсы разделяют на повсеместно распростра­ненные и локализованные. Повсеместно распространенные гео­термальные ресурсы представлены те

Приближенные методы расчета температурных режимов при эксплуатации породных теплообменников
  Если принять, что вода, фильтрующая в породном теплообмен­нике, нагревается только за счет тепла, заключенного в его объеме, а потеря тепла в нем компенсируется за счет подпитки теп

Разработка связных пород в период с отрицательными температурами
  В России около 25-30% ежегодных объемов разрабатываемых рыхлых и связных пород на карьерах приходится на периоды года с отрицательными температурами. Еще больший объем земляных ра­б

Месячные колебания температуры внешней среды
  Для определения зависимости изменения температуры в зим­ний период используем значения среднемесячной температуры в данном районе. Обозначим среднемесячные температуры с октября по

Расчет глубины промерзания связанных пород
  Рассмотрим случай промерзания связной породы при открытой разработке месторождений. Сформулируем задачу: на поверхности полупространства в момент времени t=0 устанав

Полное предотвращение промерзания грунта при использовании теплоизоляционных покрытий
  Рассмотрим случай, когда теплоизоляционное покрытие обес­печивает полное предотвращение промерзания грунта. Для определения толщины теплоизоляционного покрытия (d) и

Промерзание грунта на допустимую глубину при использовании теплоизоляционного покрытия
  Для решения данной задачи рассмотрим модель «теплоизоляци­онное покрытие-промерзший грунт-талый грунт», изображенную на рис. 2.3.

Сущность способа и область его применения
  Проведение горных выработок в слабоустойчивых водоносных породах невозможно без специальных мероприятий по их упрочне­нию и понижению водопроницаемости. При строительстве ш

Тепловой расчет формирования одиночного ледопородного цилиндра
  При замораживании вокруг каждой замораживающей колонки формируется температурное поле, изотермы которого представляют собой в плане концентрические окружности. Температура породы не

Параметры образования ледопородных ограждений
  Формирование ледопородных водонепроницаемых ограждений и подпорных стен производят с помощью серии замораживающих колонок, расположенных на равном расстоянии друг от друга. В этом с

Требования к тепловому режиму в подземных выработках
Тепловой режим в подземных выработках характеризуется совокупностью термодинамических параметров воздуха, окружающе­го массива, горной массы, машин и людей. Основными термодинами­ческими

Влияние теплового режима на процессы ведения подземных горных работ
  Влияние теплового режима рудничного воздуха сказывается на производительности труда горнорабочих, обеспечении безопасных условий их труда, поддержании устойчивости горных выработок

Теплообмен при проветривании подземных выработок
  Критериальная зависимость для определения параметров теп­лообмена рудничного воздуха со стенками выработок имеет следую­щий вид:

Источники тепла в подземных выработках
  Учет источников тепловыделения в выработках и определение их интенсивности необходимо для составления уравнений теплового баланса, на основании которых производят расчет необходимог

Методы нормализации температурного режима рудничного воздуха
  Мероприятия по нормализации температурного режима руд­ничного воздуха можно разделить на два типа: 1) теплотехнические, основанные на применении различных технически

Проблемы разработки и транспортирования рыхлых и связных пород
  При разработке талых рыхлых и связных пород проблемным является вопрос предотвращения налипания горной массы на рабо­чую поверхность добычного и транспортного горного оборудования и

Термодинамическое разрушение талых рыхлых и связных пород
  Как уже указывалось, что для очистки транспортных сосудов от налипшей горной массы применяют бесконтактный термодинамиче­ский способ. В качестве генератора высокоскоростной газовой

Термодинамическое хрупкое разрушение мерзлых рыхлых и связных пород
  Этот способ разрушения имеет место при термическом бурении скважин в мерзлых породах, а также при термодинамической очист­ке рабочих поверхностей добычного и транспортного горного о

Термодинамическое разрушение мерзлых рыхлых и связных пород путем оттаивания и абляции
  Режим термодинамического разрушения мерзлых рыхлых и связных пород путем оттаивания и абляции имеет место при TTh < 106°С/м в процесс бурения скважин или оч

Техника и технология термодинамического разрушения талых и мерзлых пород при их разработке и транспортировании
  Термодинамическое разрушение талых и мерзлых рыхлых и связных пород применительно к очистке добычного и транспортного горного оборудования от налипшей и намерзшей горной массы в нас

Коэффициенты диффузии
  В выражениях для диффузионных газовых потоков ко­эффициенты молекулярной и турбулентной диффузии являются единственными параметрами, учитывающими свойства среды. Ес­тественно, что э

Общие положения
  Во многих случаях по­лезные результаты могут быть получены более простым инте­гральным методом. Интегральный метод, или метод усредненных характеристик, ос­нован на том фак

Выработка как объект вентиляции
  Характер проявления газодинамических эффектов в горных выработках существенно зависит от характера движения воздуха в последних. Как известно, в практике шахтной аэрологии воздушные

Ограниченные потоки в системе выработок
  Возникающие в выработках с ограниченными воздушными по­токами газодинамические ситуации зависят от режима вентиляции, вида источника (точечный или линейный), характера газовыделения

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги