рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Объекты исследования

Объекты исследования - раздел Строительство, Разработка технологии образцов бетона, с использованием модифицированной полимерной арматуры Объекты Исследования. Полимерная Арматура. При Получении Пкм, В Качестве Связ...

Объекты исследования. Полимерная арматура. При получении ПКМ, в качестве связующего, использовали эпоксидную смолу ЭД-20, отверждаемую полиэтиленполиамином, а в качестве армирующих наполнителей - стеклянную нить. Арматуру получаем путем пропитки технической нити – раствором термореактивного связующего (эпоксидного). Эпоксидное связующее получаем путем смешивания смолы ЭД-20, отвердителя (ПЭПА) и ацетона в следующем массовом соотношении - 9,0:1,0:0,9. Берем катушку с нитью. Устанавливаем ее на подающее устройство. Пропускаем нить через фиксирующие и направляющие элементы установки.

Приготовленный раствор связующего заливают в пропиточную ванну.

Включив установку, необходимо следить за стабильностью подачи нити в пропиточную ванну.

После прохождения пропиточной ванны нить, пройдя через направляющие кольца, наматывается на мотовило. В движение мотовило приводит двигатель переменного тока. Передача вращающего момента от двигателя к мотовилу осуществляется посредством ременной передачи. Количество сделанных мотовилом оборотов регистрируется счетчиком нити. После окончания намотки извлекаем полученный материал, предварительно сделав надрезы вдоль оси мотовила.

Пропусканием через кольцо препрегу придают форму цилиндра, после чего образец дополнительно обматывают одиночной пропитанной нитью. Далее полученные цилиндры определенной длины подвергают термостатированию при определенной температуре в интервале 30-70 градусов в течение 8-12 мин. Для окончательного отверждения далее образцы выдерживают при комнатной температуре в течение суток. Для изучения влияния УФ излучения на кинетику отверждения и свойства получаемого материала в термостате находится источник УФ излучения, который включается во время термостатирования.

Таким образом, по предлагаемой технологии обработка УФ облучением проводится одновременно с термостатированием. Далее определяем характеристики материала в полученном изделии. Для этого из отвержденных цилиндров выпиливают образцы стандартных размеров предусмотренных ГОСТом. Результаты испытаний и расчетов заносят в таблицы. Экспериментальная установка.

При разработке технологии модификации полимерной арматуры возникла необходимость создания установки для изучения влияния ультрафиолетового излучения (УФИ) на физико-механические характеристики получаемого нами материала. Так как организация непрерывного процесса изготовления и модификации материала в лабораторных условиях не представляется возможной, нами было принято решение о разделении стадий пропитки, модификации и формования. Таким образом, нами были изготовлены три функционально независимых устройства.

Устройство для пропитки волокон и нитей связующим (рис.1). Волокно или нить с паковки 1 поступает на вход пропиточной ванны 2. Ванна представляет собой емкость, в которой происходит пропитка наполнителя раствором термореактивного связующего (эпоксидного). Для обеспечения стабильного натяжения и равномерной пропитки в ванне были установлены направляющие элементы. После прохождения пропиточной ванны пропитанная нить наматывается на вращающееся мотовило 4. Передача вращательного движения от электродвигателя 6 к мотовилу осуществляется с помощью ременной передачи 5. Равномерность намотки обеспечивается укладчиком 3. С помощью него можно регулировать шаг намотки.

В движение укладчик приводится электродвигателем постоянного тока 8. Управление работой укладчика осуществляется с пульта 7. Рис.1. Схема устройства для пропитки СН связующим: 1 - паковка с технической нитью; 2 - пропиточная ванна; 3 - укладчик; 4 - мотовило; 5 - ременная передача; 6-электродвигатель; 7-блок управления; 8 - электродвигатель постоянного тока. Устройство для обработки УФ излучением (рис.2). Полученный материал 1 в виде цилиндров определенной длины укладывают на проволочный каркас 2 (мотовило), которое помещали в рабочую камеру 3. Внутренняя поверхность рабочей камеры покрыта алюминиевой фольгой, с целью равномерного распределения излучения в рабочем объеме.

В рабочей камере устанавливается необходимая температура, которая регулируется и поддерживается постоянной в течение опыта при помощи нагревателя 6, включение которого осуществляется с контрольного термометра 9 через терморегулятор 8, контролируемого термометром 10. После выхода на стабильный температурный режим включают облучатель 4. В качестве источника УФИ используется облучатель бактерицидный настенный ОБН – 150 с лампой ДБ – 30 при длине волны λ = 253,7 нм, которая обеспечивает облученность не менее 0,75 Вт/м3, на расстоянии до 1 м. Расстояние от цилиндрического УФИ до препрега составляет 15 – 25 см. Для достижения равномерного распределения связующего, и для всестороннего облучения материала проволочное мотовило рекомендуется вращать при помощи привода от электродвигателя 9. Устройство для формования (рис.3). Полученный препрег укладывается в нижнюю полуформу 1.1 и накрывается верхней полуформой 1.1.Стягивающие гайки 2 накручиваются с обеих сторон формы.

В них вкручиваются болты-уплотнители.

Рис.3. Схема устройства для изготовления образцов изделия: 1.1 - нижняя полуформа; 1.2- верхняя полуформа; 2 - стягивающие гайки; 3 - болты- уплотнители.

Бетонные образцы. Основными технологическими операциями приготовления бетонной смеси являются дозировка исходных материалов и их перемешивание. Важнейшим условием приготовления бетонной смеси с заданными показателями свойств, а также обеспечения постоянства этих показателей от замеса к замесу является точность дозировки составляющих материалов в соответствии с рабочим составом бетона.

Дозирование материалов производят дозаторами (мерниками) периодического или непрерывного действия. Первые могут иметь ручное, полуавтоматическое или автоматическое управление. Наиболее совершенны автоматические дозаторы по массе, обладающие высокой точностью дозирования, малой продолжительностью цикла взвешивания (35-45 с) и легкостью управления. У полуавтоматических дозаторов загрузочные затворы открываются и закрываются автоматически после наполнения мерника. Выгрузочное отверстие управляется вручную.

Автоматические дозаторы управляются с центрального пульта. Отвешивание требуемого количества материала осуществляется автоматически в два этапа, сначала примерно на 90 %. А затем – остаточное довешивание материала. Управление автоматическими дозаторами может осуществляться также с помощью перфорированных карт, представляющих зашифрованный код, соответствующий заданному количеству дозируемых материалов. Эта система позволяет дозировать неограниченное количество составов смеси и повторять заданный режим дозирования любое число раз. По существующим нормам допускаемое отклонение в дозировании должно быть не более ±1% по массе для цемента и воды и не более ±2% для заполнителей.

Такая точность может быть обеспечена только при дозировании по массе. Перемешивание бетонной смеси производится в бетоносмесителях периодического и непрерывного действия. В бетоносмесителях периодического действия рабочие циклы машины протекают с перерывами, то есть в них периодически загружаются отвешенные порции материалов, перемешиваются и далее бетонная смесь выгружается. В бетоносмесителях непрерывного действия все три операции производятся непрерывно Емкость бетоносмесителя определяется не выходом готового бетона, а суммой объемов загружаемых материалов (без воды). Перемешивание должно обеспечить сплошное обволакивание зерен заполнителя и равномерное распределение раствора в массе крупно заполнителя.

Продолжительность перемешивания бетонной смеси зависит от подвижности бетонной смеси и емкости бетоносмесителя.

Чем меньше подвижность бетонной смеси и чем больше рабочая емкость бетоносмесителя, тем больше оптимальное время перемешивания. После тщательного перемешивания, полученную бетонную смесь заливают в формы с заранее установленными в них полимерными каркасами, после застывания бетонной смеси получаем бетонные образцы, армированные полимерной арматурой. 4.

– Конец работы –

Эта тема принадлежит разделу:

Разработка технологии образцов бетона, с использованием модифицированной полимерной арматуры

Поэтому уже давно ученые и специалисты всего мира пытаются найти аналог стали, который обладал бы подобными свойствами, но, вместе с тем, затраты на… Обладая такими положительными свойствами, как большая прочность, повышенная… Основная тенденция промышленности пластмасс в настоящее время заключается не столько в разработке новых полимеров,…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Объекты исследования

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Характеристика исходного сырья
Характеристика исходного сырья. Эпоксидный олигомер дианового ряда, ЭД-20. Выбор эпоксидного связующего объясняется широким температурным интервалом отверждения от 5 до 1500С, отсутствием летучих п

Методы и методики исследования
Методы и методики исследования. Физические, физико-химические и физико-механические свойства определяются в соответствии со стандартными методиками: Плотность (ρ , кг/м3) ГОСТ 4620-84 Разр

Результаты эксперимента и их обсуждение
Результаты эксперимента и их обсуждение. Расчеты для полимерной арматуры Определение плотности (ρ, кг/м3): ; m1 = 34,6 г; m2 = 34,5 г; m3 = 32,6 г; V - определяли методом погружения полиме

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги