рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Физическая структуризация локальной сети. Повторители и концентраторы

Физическая структуризация локальной сети. Повторители и концентраторы - раздел Архитектура, Архитектура компьютерной сети. Типовой состав оборудования локальной сети перейти. Физическая структуризация локальной сети. Повторители и концентраторы   Для Построения Простейшей Односегментной Сети Достаточно Имет...

 

Для построения простейшей односегментной сети достаточно иметь сетевые адаптеры и кабель подходящего типа. Но даже в этом простом случае часто используются дополнительные устройства - повторители сигналов, позволяющие преодолеть ограничения на максимальную длину кабельного сегмента.

 

Основная функция повторителя (repeater), как это следует из его названия - повторение сигналов, поступающих на один из его портов, на всех остальных портах (Ethernet) или на следующем в логическом кольце порте (Token Ring, FDDI) синхронно с сигналами-оригиналами. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети станциями.

 

Многопортовый повторитель часто называют концентратором (hub, concentrator), что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть. Практически во всех современных сетевых стандартах концентратор является необходимым элементом сети, соединяющим отдельные компьютеры в сеть. Отрезки кабеля, соединяющие два компьютера или какие либо два других сетевых устройства называются физическими сегментам. Таким образом, концентраторы и повторители, которые используются для добавления новых физических сегментов, являются средством физической структуризации сети.

 

Концентраторы образуют из отдельных физических отрезков кабеля общую среду передачи данных - логический сегмент (рис.3).

 

 

Логический сегмент также называют доменом коллизий, поскольку при попытке одновременной передачи данных любых двух компьютеров этого сегмента, хотя бы и принадлежащих разным физическим сегментам, возникает блокировка передающей среды. Следует особо подчеркнуть, что какую бы сложную структуру не образовывали концентраторы, например, путем иерархического соединения (рис.4), все компьютеры, подключенные к ним, образуют единый логический сегмент, в котором любая пара взаимодействующих компьютеров полностью блокирует возможность обмена данными для других компьютеров.

 

 

Появление устройств, централизующих соединения между отдельными сетевыми устройствами, потенциально позволяет улучшить управляемость сети и ее эксплуатационные характеристики (модифицируемость, ремонтопригодность и т.п.). С этой целью разработчики концентраторов часто встраивают в свои устройства, кроме основной функции повторителя, ряд вспомогательных функций, весьма полезных для улучшения качества сети.

 

Различные производители концентраторов реализуют в своих устройствах различные наборы вспомогательных функций, но наиболее часто встречаются следующие:

Объединение сегментов с различными физическими средами (например, коаксиал, витая пара и оптоволокно) в единый логический сегмент.

Автосегментация портов - автоматическое отключение порта при его некорректном поведении (повреждение кабеля, интенсивная генерация пакетов ошибочной длины и т.п.).

Поддержка между концентраторами резервных связей, которые используются при отказе основных.

Защита передаваемых по сети данных от несанкционированного доступа (например, путем искажения поля данных в кадрах, повторяемых на портах, не содержащих компьютера с адресом назначения).

Поддержка средств управления сетями - протокола SNMP, баз управляющей информации MIB.

Концентратор Cisco Fasthub 108T

 

 

3. Логическая структуризация сети. Мосты и коммутаторы

 

Несмотря на появление новых дополнительных возможностей основной функцией концентраторов остается передача пакетов по общей разделяемой среде. Коллективное использование многими компьютерами общей кабельной системы в режиме разделения времени приводит к существенному снижению производительности сети при интенсивном трафике. Общая среда перестает справляться с потоком передаваемых кадров и в сети возникает очередь компьютеров, ожидающих доступа. Это явление характерно для всех технологий, использующих разделяемые среды передачи данных, независимо от используемых алгоритмов доступа (хотя наиболее страдают от перегрузок трафика сети Ethernet с методом случайного доступа к среде).

 

Поэтому сети, построенные на основе концентраторов, не могут расширяться в требуемых пределах - при определенном количестве компьютеров в сети или при появлении новых приложений всегда происходит насыщение передающей среды, и задержки в ее работе становятся недопустимыми. Эта проблема может быть решена путем логической структуризации сети с помощью мостов, коммутаторов и маршрутизаторов.

 

Мост (bridge), а также его быстродействующий функциональный аналог - коммутатор (switching hub), делит общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту моста/коммутатора (рис.5). При поступлении кадра на какой-либо из портов мост/коммутатор повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат.

 

Отличительными функциями моста являются фильтрация фреймов на втором уровне и используемый при этом способ обработки трафика. Для фильтрации или выборочной доставки данных мост создает таблицу всех MAC-адресов, расположенных в данном сетевом сегменте и в других известных ему сетях, и преобразует их в соответствующие номера портов. Этот процесс подробно описан ниже.Этап 1. Если устройство пересылает фрейм данных впервые, мост ищет в нем MAC-адрес устройства отправителя и записывает его в свою таблицу адресов.

Этап 2. Когда данные проходят по сетевой среде и поступают на порт моста, он сравнивает содержащийся в них MAC-адрес пункта назначения с MAC-адресами, находящимися в его адресных таблицах.

Этап 3. Если мост обнаруживает, что MAC-адрес получателя принадлежит тому же сетевому сегменту, в котором находится отправитель, то он не пересылает эти данные в другие сегменты сети. Этот процесс называется фильтрацией (filtering). За счет такой фильтрации мосты могут значительно уменьшить объем передаваемых между сегментами данных, поскольку при этом исключается ненужная пересылка трафика.

Этап 4. Если мост определяет, что MAC-адрес получателя находится в сегменте, отличном от сегмента отправителя, он направляет данные только в соответствующий сегмент.

Этап 5. Если MAC-адрес получателя мосту неизвестен, он рассылает данные во все порты, за исключением того, из которого эти данные были получены. Такой процесс называется лавинной рассылкой (flooding). Лавинная рассылка фреймов также используется в коммутаторах.

Этап 6. Мост строит свою таблицу адресов (зачастую ее называют мостовой таблицей или таблицей коммутации), изучая MAC-адреса отправителей во фреймах. Если MAC-адрес отправителя блока данных, фрейма, отсутствует в таблице моста, то он вместе с номером интерфейса заносится в адресную таблицу. В коммутаторах, если рассматривать (в самом простейшем приближении) коммутатор как многопортовый мост, когда устройство обнаруживает, что MAC-адрес отправителя, который ему известен и вместе с номером порта занесен в адресную таблицу устройства, появляется на другом порту коммутатора, то он обновляет свою таблицу коммутации. Коммутатор предполагает, что сетевое устройство было физически перемещено из одного сегмента сети в другой.

 

Разница между мостом и коммутатором состоит в том, что мост в каждый момент времени может осуществлять передачу кадров только между одной парой портов, а коммутатор одновременно поддерживает потоки данных между всеми своими портами. Другими словами, мост передает кадры последовательно, а коммутатор параллельно. (Для упрощения изложения далее в этом разделе будет использоваться термин "коммутатор" для обозначения этих обоих разновидностей устройств, поскольку все сказанное ниже в равной степени относится и к мостам, и к коммутаторам.) Следует отметить, что в последнее время локальные мосты полностью вытеснены коммутаторами. Мосты используются только для связи локальных сетей с глобальными, то есть как средства удаленного доступа, поскольку в этом случае необходимость в параллельной передаче между несколькими парами портов просто не возникает.

 

При работе коммутатора среда передачи данных каждого логического сегмента остается общей только для тех компьютеров, которые подключены к этому сегменту непосредственно. Коммутатор осуществляет связь сред передачи данных различных логических сегментов. Он передает кадры между логическими сегментами только при необходимости, то есть только тогда, когда взаимодействующие компьютеры находятся в разных сегментах.

 

Деление сети на логические сегменты улучшает производительность сети, если в сети имеются группы компьютеров, преимущественно обменивающиеся информацией между собой. Если же таких групп нет, то введение в сеть коммутаторов может только ухудшить общую производительность сети, так как принятие решения о том, нужно ли передавать пакет из одного сегмента в другой, требует дополнительного времени.

 

Однако даже в сети средних размеров такие группы, как правило, имеются. Поэтому разделение ее на логические сегменты дает выигрыш в производительности - трафик локализуется в пределах групп, и нагрузка на их разделяемые кабельные системы существенно уменьшается.

 

Коммутаторы принимают решение о том, на какой порт нужно передать кадр, анализируя адрес назначения, помещенный в кадре, а также на основании информации о принадлежности того или иного компьютера определенному сегменту, подключенному к одному из портов коммутатора, то есть на основании информации о конфигурации сети. Для того, чтобы собрать и обработать информацию о конфигурации подключенных к нему сегментов, коммутатор должен пройти стадию "обучения", то есть самостоятельно проделать некоторую предварительную работу по изучению проходящего через него трафика. Определение принадлежности компьютеров сегментам возможно за счет наличия в кадре не только адреса назначения, но и адреса источника, сгенерировавшего пакет. Используя информацию об адресе источника, коммутатор устанавливает соответствие между номерами портов и адресами компьютеров. В процессе изучения сети мост/коммутатор просто передает появляющиеся на входах его портов кадры на все остальные порты, работая некоторое время повторителем. После того, как мост/коммутатор узнает о принадлежности адресов сегментам, он начинает передавать кадры между портами только в случае межсегментной передачи. Если, уже после завершения обучения, на входе коммутатора вдруг появится кадр с неизвестным адресом назначения, то этот кадр будет повторен на всех портах.

 

Коммутаторы Cisco серии Catalyst 6500

 

 

Мосты/коммутаторы, работающие описанным способом, обычно называются прозрачными (transparent), поскольку появление таких мостов/коммутаторов в сети совершенно не заметно для ее конечных узлов. Это позволяет не изменять их программное обеспечение при переходе от простых конфигураций, использующих только концентраторы, к более сложным, сегментированным.

 

Существует и другой класс мостов/коммутаторов, передающих кадры между сегментами на основе полной информации о межсегментном маршруте. Эту информацию записывает в кадр станция-источник кадра, поэтому говорят, что такие устройства реализуют алгоритм маршрутизации от источника (source routing). При использовании мостов/коммутаторов с маршрутизацией от источника конечные узлы должны быть в курсе деления сети на сегменты и сетевые адаптеры, в этом случае должны в своем программном обеспечении иметь компонент, занимающийся выбором маршрута кадров.

 

За простоту принципа работы прозрачного моста/коммутатора приходится расплачиваться ограничениями на топологию сети, построенной с использованием устройств данного типа - такие сети не могут иметь замкнутых маршрутов - петель. Мост/коммутатор не может правильно работать в сети с петлями, при этом сеть засоряется зацикливающимися пакетами и ее производительность снижается.

 

Для автоматического распознавания петель в конфигурации сети разработан алгоритм покрывающего дерева (Spanning Tree Algorithm, STA). Этот алгоритм позволяет мостам/коммутаторам адаптивно строить дерево связей, когда они изучают топологию связей сегментов с помощью специальных тестовых кадров. При обнаружении замкнутых контуров некоторые связи объявляются резервными. Мост/коммутатор может использовать резервную связь только при отказе какой-либо основной. В результате сети, построенные на основе мостов/коммутаторов, поддерживающих алгоритм покрывающего дерева, обладают некоторым запасом надежности, но повысить производительность за счет использования нескольких параллельных связей в таких сетях нельзя.

 

Точка беспроводного доступа Cisco AP 541N

Беспроводные мосты

 

Беспроводной мост обеспечивает высокоскоростные беспроводные соединения большой дальности в пределах видимости5 (до 25 миль) между сетями Ethernet.

В беспроводных сетях Cisco любая точка доступа может быть использована в качестве повторителя (точки расширения).

 

Беспроводной мост Cisco WET200-G5 с интегрированным 5-ти портовым коммутатором

 

 

4. Маршрутизаторы

 

Маршрутизатор (router) позволяет организовывать в сети избыточные связи, образующие петли. Он справляется с этой задачей за счет того, что принимает решение о передаче пакетов на основании более полной информации о графе связей в сети, чем мост или коммутатор. Маршрутизатор имеет в своем распоряжении базу топологической информации, которая говорит ему, например, о том, между какими подсетями общей сети имеются связи и в каком состоянии (работоспособном или нет) они находятся. Имея такую карту сети, маршрутизатор может выбрать один из нескольких возможных маршрутов доставки пакета адресату. В данном случае под маршрутом понимают последовательность прохождения пакетом маршрутизаторов. Например, на рисунке 6 для связи станций L2 сети LAN1 и L1 сети LAN6 имеется два маршрута: М1-М5-М7 и М1-М6-М7.

 

 

В отличии от моста/коммутатора, который не знает, как связаны сегменты друг с другом за пределами его портов, маршрутизатор видит всю картину связей подсетей друг с другом, поэтому он может выбрать правильный маршрут и при наличии нескольких альтернативных маршрутов. Решение о выборе того или иного маршрута принимается каждым маршрутизатором, через который проходит сообщение.

 

Для того, чтобы составить карту связей в сети, маршрутизаторы обмениваются специальными служебными сообщениями, в которых содержится информация о тех связях между подсетями, о которых они знают (эти подсети подключены к ним непосредственно или же они узнали эту информацию от других маршрутизаторов).

 

Построение графа связей между подсетями и выбор оптимального по какому-либо критерию маршрута на этом графе представляют собой сложную задачу. При этом могут использоваться разные критерии выбора маршрута - наименьшее количество промежуточных узлов, время, стоимость или надежность передачи данных.

 

Маршрутизаторы позволяют объединять сети с различными принципами организации в единую сеть, которая в этом случае часто называется интерсеть (internet). Название интерсеть подчеркивает ту особенность, что образованное с помощью маршрутизаторов объединение компьютеров представляет собой совокупность нескольких сетей, сохраняющих большую степень автономности, чем несколько логических сегментов одной сети. В каждой из сетей, образующих интерсеть, сохраняются присущие им принципы адресации узлов и протоколы обмена информацией. Поэтому маршрутизаторы могут объединять не только локальные сети с различной технологией, но и локальные сети с глобальными.

 

Маршрутизаторы не только объединяют сети, но и надежно защищают их друг от друга. Причем эта изоляция осуществляется гораздо проще и надежнее, чем с помощью мостов/коммутаторов. Например, при поступлении кадра с неправильным адресом мост/коммутатор обязан повторить его на всех своих портах, что делает сеть незащищенной от некорректно работающего узла. Маршрутизатор же в таком случае просто отказывается передавать "неправильный" пакет дальше, изолируя дефектный узел от остальной сети.

 

Кроме того, маршрутизатор предоставляет администратору удобные средства фильтрации потока сообщений за счет того, что сам распознает многие поля служебной информации в пакете и позволяет их именовать понятным администратору образом. Нужно заметить, что некоторые мосты/коммутаторы также способны выполнять функции гибкой фильтрации, но задавать условия фильтрации администратор сети должен сам в двоичном формате, что достаточно сложно.

 

Кроме фильтрации, маршрутизатор может обеспечивать приоритетный порядок обслуживания буферизованных пакетов, когда на основании некоторых признаков пакетам предоставляются преимущества при выборе из очереди.

 

В результате, маршрутизатор оказывается сложным интеллектуальным устройством, построенным на базе одного, а иногда и нескольких мощных процессоров. Такой специализированный мультипроцессор работает, как правило, под управлением специализированной операционной системы.

 

5. Модульные многофункциональные концентраторы

 

При построении сложной сети могут быть полезны все типы коммуникационных устройств: и концентраторы, и мосты, и коммутаторы, и маршрутизаторы (сетевые адаптеры исключены из этого списка потому, что они необходимы всегда). Чаще всего отдельное коммуникационное устройство выполняет только одну основную функцию, представляя собой либо повторитель, либо мост, либо коммутатор, либо маршрутизатор. Но это не всегда удобно, так как в некоторых случаях более рационально иметь в одном корпусе многофункциональное устройство, которое может сочетать эти базовые функции и тем самым позволяет разработчику сети использовать его более гибко.

 

В идеале можно представить себе универсальное коммуникационное устройство, имеющее достаточное количество портов для подключения сетевых адаптеров, которые объединяются в группы с программируемыми функциями взаимоотношений между собой (по алгоритму повторителя, коммутатора или маршрутизатора). Однако известно, что всякая универсализация всегда вредит качеству выполнения узких специальных функций и, возможно поэтому, на современном уровне развития техники такое полностью универсальное устройство пока не появилось, хотя отдельное совмещение функций в одном устройстве иногда выполняется.

 

Так маршрутизаторы часто могут работать и в качестве мостов, в зависимости от того, как сконфигурировано администратором их программное обеспечение. А вот функции повторителя требуют высокого быстродействия, которое может быть достигнуто только на сугубо аппаратном уровне. Поэтому функции повторителя не объединяются с функциями моста или маршрутизатора.

 

Для совмещения функций может быть использован другой подход. В специальных устройствах - модульных концентраторах - отдельные компоненты, выполняющие одну из трех описанных основных функций, реализованы в виде модулей, устанавливаемых в общем корпусе. При этом межмодульные связи организуются не внешним образом, как это делается, когда модули представляют собой отдельные устройства, а по внутренним шинам единого устройства.

 

Модульные многофункциональные устройства часто называют концентраторами, подчеркивая их централизующую роль в сети. При этом термин "концентратор" используется не как синоним термина повторитель, а в более широком смысле. Нужно хорошо понимать в каждом конкретном случае функциональное назначение отдельных модулей такого концентратора. В зависимости от комплектации модульный многофункциональный концентратор может сочетать функции и повторителя (причем различных технологий), и моста, и коммутатора, и маршрутизатора, а может выполнять и только одну из них.

 

6. Оборудование для доступа к территориальным сетям

 

Корпоративная сеть объединяет локальные сети и компьютеры всех структурных подразделений предприятия, в том числе удаленных от центрального отделения на значительные расстояния, которые не под силу покрыть большинству используемых сегодня технологий локальных сетей. Поэтому при организации почти каждой корпоративной сети приходится решать задачу связи удаленных подразделений на основе использования территориальных сетей, называемых также глобальными.

 

Принято делить территориальные транспортные средства, используемые для построения корпоративной сети, на две большие категории:

магистральные средства,

средства удаленного доступа.

 

Магистральные средства используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть поддерживать очень высоким коэффициент готовности, так как по ним передается трафик многих критических для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может "прощаться" высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным средствам не предъявляются требования поддержания разветвленной инфраструктуры доступа.

 

Обычно в качестве магистральных средств используются цифровые выделенные каналы со скоростями от 2 Мб/с до 622 Мб/c, сети с коммутацией пакетов frame relay, АТМ, Х.25 или TCP/IP.

 

Под средствами удаленного доступа понимаются средства, необходимые для связи небольших локальных сетей и даже удаленных отдельных компьютеров с центральной локальной сетью предприятия. В качестве отдельных удаленных узлов могут также выступать банкоматы или кассовые аппараты, требующие доступ к центральной базе данных о легальных клиентах банка, пластиковые карточки которых необходимо авторизовать на месте. Банкоматы или кассовые аппараты обычно рассчитаны на взаимодействие с центральным компьютером по сети Х.25, которая в свое время специально разрабатывалась как сеть для удаленного доступа неинтеллектуального терминального оборудования к центральному компьютеру.

 

К средствам удаленного доступа предъявляются требования, существенно отличающиеся от требований к магистральным средствам. Так как точек удаленного доступа у предприятия может быть очень много, то одним из основных требований является наличие разветвленной инфраструктуры доступа, которая может использоваться сотрудниками предприятия как при работе дома, так и в командировках. Кроме того, стоимость удаленного доступа должна быть умеренной, чтобы экономически оправдать затраты на подключение десятков или сотен удаленных абонентов. При этом требования к пропускной способности у отдельного компьютера или локальной сети, состоящей из двух-трех клиентов, обычно укладываются в диапазон нескольких десятков Кб/c.

 

В качестве транспортных средств удаленного доступа используются телефонные аналоговые сети, сети ISDN и реже - сети frame relay. Качественный скачок в расширении возможностей удаленного доступа произошел в связи со стремительным ростом популярности и распространенности сети Internet. Транспортные услуги Internet дешевле, чем услуги междугородных и международных телефонных сетей, а их качество быстро улучшается.

 

Если предприятие не строит свою территориальную сеть, а пользуется услугами общественной сети, то внутренняя структура этой сети его не интересует. Для абонента общественной сети главное - это предоставляемый сетью сервис и четкое определение интерфейса взаимодействия с сетью для того, чтобы его оконечное оборудование данных и аппаратура передачи данных корректно сопрягались с соответствующим оборудованием и программным обеспечением общественной сети.

 

На рисунке 7 приведен типичный пример внутренней структуры глобальной сети передачи данных. Сеть строится на основе некоммутируемых каналов связи, которые соединяются между собой коммутаторами S глобальной сети. Приведенная структура характерна как для магистральных сетей типа АТМ или frame relay, так и для сетей, используемых для удаленного доступа - аналоговых телефонных сетей, сетей ISDN или первичных цифровых сетей PDH/SDH. Все эти сети можно разделить на три класса по способу коммутации, применяемому в коммутаторах S:

Первичные сети с постоянной коммутацией каналов. В сетях этого типа абоненты сети не могут инициировать коммутацию соединений между собой - каналы между абонентами коммутируются на постоянной основе оператором сети. Говорят, что такие сети предоставляют сервис выделенных (dedicated или leased) каналов, так как для пользователя коммутаторы сети "не видны" и сеть представляется каналом "точка - точка". Эти сети делятся на два подкласса - аналоговые и цифровые, в зависимости от типа техники мультиплексирования и коммутации каналов. Аналоговые сети используют мультиплексирование с частотным разделением каналов - технику FDM (Frequency Division Multiplexing), а цифровые - мультиплексирование с временным разделением каналов - технику TDM (Time Division Multiplexing). В свою очередь цифровые первичные сети подразделяются на сети, использующие аппаратуру и протоколы технологии PDH со скоростями каналов от 64 Кб/с до 45 Мб/с, и сети, построенные на основе аппаратуры и протоколов технологии SONET/SDH со скоростями каналов от 51 Мб/c до 2.4 Гб/с. Частным случаем первичной сети является канал "точка - точка", образованный кабелем без промежуточной аппаратуры мультиплексирования и коммутации. Такой канал иногда называют ненагруженным, подчеркивая факт отсутствия коммутаторов.

Сети с коммутацией каналов. К сетям этого типа относятся телефонные сети, позволяющие абонентам сети динамически инициировать установление соединений друг с другом. Телефонные сети делятся на аналоговые, использующие технику мультиплексирования FDM, и цифровые, основанные на технике мультиплексирования TDM. Наиболее распространенным типом цифровых телефонных сетей являются сети ISDN.

Сети с коммутацией пакетов. Это сети, в которых коммутаторы оперируют с пакетами пользовательских данных. К сетям этого типа относятся все сети, разработанные специально для передачи компьютерного трафика - Х.25, frame relay, TCP/IP, ATM (последний тип предназначен в равной степени как для передачи компьютерных данных, так и для передачи голоса и любых других видов мультимедийного трафика).

 

Независимо от типа коммутации, используемого в территориальной сети, а также от того, относится ли территориальная сеть к магистральным средствам или к средствам удаленного доступа, все абоненты сети присоединяются к ней с помощью оборудования доступа (Access Devices), которое позволяет согласовать протоколы и интерфейсы локальных сетей с протоколами и интерфейсами территориальной сети. Обычно в глобальной сети строго описан и стандартизован интерфейс взаимодействия пользователей с сетью - User Network Interface, UNI (рис.7). Это необходимо для того, чтобы пользователи могли без проблем подключаться к сети с помощью коммуникационного оборудования любого производителя, который соблюдает стандарт UNI.

 

 

Устройство доступа - это устройство, которое поддерживает на входе интерфейс локальной сети, а на выходе - требуемый интерфейс UNI.

 

Интерфейс между локальной и глобальной сетями может быть реализован устройствами разных типов. В первую очередь эти устройства делятся на устройства:

аппаратуру передачи данных (Data Circuit-terminating Equipment, DCE),

оконечное оборудование данных (Data Terminal Equipment, DTE).

 

Устройства DCE представляют собой аппаратуру передачи данных по территориальным каналам, работающую на физическом уровне. Устройства этого типа имеют выходные интерфейсы физического уровня, согласованные с территориальным каналом передачи данных. Различают аппаратуру передачи данных по аналоговым и цифровым каналам. Для передачи данных по аналоговым каналам применяются модемы различных стандартов, а по цифровым - устройства DSU/CSU.

 

DTE - это очень широкий класс устройств, которые непосредственно готовят данные для передачи по глобальной сети. DTE представляют собой устройства, работающие на границе между локальными и глобальными сетями и выполняющие протоколы уровней более высоких, чем физический. DTE могут поддерживать только канальные протоколы - такими устройствами являются удаленные мосты, либо протоколы канального и сетевого уровней - тогда они являются маршрутизаторами, а могут поддерживать протоколы всех уровней, включая прикладной - в таком случае их называют шлюзами.

 

Связь компьютера или маршрутизатора с цифровой выделенной линией осуществляется с помощью пары устройств, обычно выполненных в одном корпусе или же совмещенных с маршрутизатором. Этими устройствами являются: устройство обслуживания данных и устройство обслуживания канала. В англоязычной литературе эти устройства называются соответственно Data Service Unit (DSU) и Channel Service Unit (CSU). Устройство обслуживания данных DSU преобразует сигналы, поступающие от оконечного оборудования данных DTE (обычно по интерфейсу RS-232 или HSSI), в биполярные импульсы интерфейса G.703. Устройство обслуживания канала CSU также выполняет все временные отсчеты, регенерацию сигнала и выравнивание загрузки канала. CSU выполняет более узкие функции, в основном оно занимается созданием оптимальных условий передачи в линии (выравнивание). Эти устройства, как и модуляторы-демодуляторы, часто обозначаются одним словом DSU/CSU (рис.8).

 

 

Оконечное оборудование данных - устройства DTE - это устройства, работающие на более высоком уровне, чем физический, которые формируют данные непосредственно для передачи из локальной сети в глобальную. Под названием DTE объединяются несколько типов устройств - маршрутизаторы с интерфейсами глобальных сетей, мультиплексоры "голос - данные", устройства доступа к сетям frame relay (FRAD), устройства доступа к сетям Х.25 (PAD), удаленные мосты. Когда к глобальной сети подключается не локальная сеть, а отдельный компьютер, то он при этом сам становится устройством типа DTE. DTE принимают решения о передаче данных в глобальную сеть, а также выполняют форматирование данных на канальном и сетевом уровнях, а для сопряжения с территориальным каналом используют DCE. Такое разделение функций позволяет гибко использовать одно и то же устройство DTE для работы с разными глобальными сетями за счет замены только DCE.

 

Рассмотрим отдельные типы устройств, входящих в группу DTE.

 

Маршрутизаторы с интерфейсами глобальных сетей. При передаче данных через глобальную сеть маршрутизаторы работают точно так же, как и при соединении локальных сетей - если они принимают решение о передаче пакета через глобальную сеть, то упаковывают пакеты принятого в локальных сетях сетевого протокола (например, IP) в кадры канального уровня глобальной сети (например, frame relay) и отправляют их в соответствии с интерфейсом UNI ближайшему коммутатору глобальной сети через устройство DTE. Каждый пользовательский интерфейс с глобальной сетью имеет свой собственный адрес в формате, принятом для технологии этой сети. В соответствии с этим адресом коммутаторы глобальной сети передают свои кадры друг другу, пока кадр не дойдет до абонента-получателя. При получении кадра маршрутизатор абонента извлекает из него сетевой пакет и передает его по локальной сети уже в соответствии с ее канальным протоколом.

 

Когда абонентом глобальной сети является отдельный компьютер, то процедуры интерфейса с сетью реализуются его программным обеспечением, а также устройством DCE, подключенным непосредственно к глобальному каналу, в качестве которого обычно выступает модем. Иногда компьютер оснащается специальным адаптером (например, адаптером сети Х.25), который разгружает центральный процессор, выполняя большую часть интерфейсных процедур аппаратно.

 

Иногда маршрутизаторы оснащаются встроенными устройствами DCE - чаще всего такими устройствами являются устройства DCU/CSU для цифровых каналов, так как они компактнее, чем аналоговые модемы.

 

Маршрутизаторы с выходами на глобальные сети характеризуются типом физического интерфейса (RS-232, RS-422, RS-530, HSSI, SDH), к которому присоединяется устройство DCE, а также поддерживаемыми протоколами территориальных сетей - протоколами коммутации каналов для телефонных сетей или протоколами коммутации пакетов для компьютерных глобальных сетей.

 

Устройства доступа к сетям frame relay - FRAD (Frame Relay Access Devices). Эти устройства представляют собой специализированные маршрутизаторы. Их специализация заключается в том, что среди глобальных интерфейсов они поддерживают только интерфейсы к сетям frame relay, а также в усеченности функций маршрутизации - чаще всего такие устройства поддерживают только протоколы IP и IPX. Появление таких специализированных устройств связано с большой популярностью сетей frame relay.

 

Устройства доступа к сетям Х.25 - PAD (Packet Assembler - Disassembler). Сети Х.25 изначально разрабатывались для связи неинтеллектуальных алфавитно-цифровых терминалов с удаленными компьютерами, поэтому в архитектуру этих сетей были включены специальные устройства - PAD'ы, собирающие данные от нескольких медленных асинхронных терминалов в общие пакеты и отсылающие пакеты в сеть.

 

Удаленные мосты. Эти устройства обычно имеют два интерфейса - один для подключения к локальной сети, а второй - для подключения к глобальной сети. Так как мост работает на канальном уровне и не поддерживает протоколы маршрутизации, то удаленные мосты чаще всего не работают через глобальные сети с коммутацией пакетов, такие как Х.25, frame relay и т.п., так как установление соединения через эти сети требует от моста интеллектуальных способностей устройства третьего уровня. Удаленный мост работает через выделенные каналы или через сеть с коммутацией каналов.

 

Мультиплексоры "голос-данные" предназначены для совмещения в рамках одной территориальной сети компьютерного и голосового трафиков. Поэтому эти мультиплексоры кроме входных интерфейсов локальных сетей имеют и интерфейсы для подключения телефонов и офисных АТС. Мультиплексоры "голос - данные" делятся на две категории в зависимости от типа глобальной сети, на которую они могут работать.

 

Мультиплексоры "голос-данные", работающие на сети с коммутацией пакетов, упаковывают голосовую информацию в кадры канального протокола такой сети и передают их ближайшему коммутатору точно так же, как и маршрутизаторы. Такой мультиплексор выполняется на базе маршрутизатора, который для голосовых пакетов использует заранее сконфигурированные маршруты. Если глобальная сеть поддерживает приоритеты трафика, то кадрам голосового трафика мультиплексор присваивает наивысший приоритет, чтобы коммутаторы обрабатывали и продвигали их в первую очередь.

 

Другим типом устройств являются мультиплексоры "голос - данные", работающие на сети с коммутацией каналов или первичные сети выделенных каналов. Эти мультиплексоры нарезают компьютерные пакеты на более мелкие части - например, байты, которые передают в соответствии с техникой мультиплексирования используемой территориальной сети - FDM или TDM. При использовании "неделимого" с точки зрения территориальной сети канала - например, канала 64 Кб/с цифровой сети или канала тональной частоты аналоговой сети, мультиплексор организует разделение этого канала между голосом и данными нестандартным фирменным способом.

 

Использование мультиплексоров "голос- данные" предполагает на другом конце территориальной сети аналогичного мультиплексора, который выполняет разделение голосового и компьютерного трафика на отдельные потоки.

 

Существует особый класс устройств, предназначенных для связи удаленных узлов в том случае, когда к сети нужно подключить не другую сеть, а автономный компьютер. В таких случаях в центральной сети устанавливается сервер удаленного доступа, который обслуживает доступ к сети большого числа разрозненных компьютеров.

 

Обычно, сервер удаленного доступа служит для подключения удаленных клиентов по телефонным сетям - аналоговом или ISDN, так как это наиболее распространенные и повсеместно доступные сети.

 

Серверы удаленного доступа обычно имеют большое количество портов для поддержки модемного пула, соединяющего сервер с телефонной городской сетью.

 

Серверы удаленного доступа подразделяются на серверы удаленных узлов, серверы удаленного управления и терминальные серверы.

Серверы удаленных узлов обеспечивают для своих клиентов только транспортный сервис, соединяя их с центральной сетью по протоколам IP, IPX или NetBIOS. В сущности, они выполняют в этом случае роль маршрутизаторов или шлюзов, ориентированных на низкоскоростные модемные соединения.

Серверы удаленного управления, кроме обеспечения транспортного соединения, выполняют и некоторые дополнительные функции - они запускают от имени своих удаленных клиентов приложения на компьютерах центральной сети и эмулируют на экране удаленного компьютера графическую среду этого приложения. Обычно, серверы удаленного управления ориентируются на среду операционных систем персональных компьютеров - Windows.

Терминальные серверы выполняют похожие функции, но для многотерминальных операционных систем - Unix, VAX VMS, IBM VM.

 

– Конец работы –

Эта тема принадлежит разделу:

Архитектура компьютерной сети. Типовой состав оборудования локальной сети перейти. Физическая структуризация локальной сети. Повторители и концентраторы

Державний університет інформаційно комунікаційних технологій.. навчально науковий інститут телекомунікацій та.. кафедра інформаційних технологій..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Физическая структуризация локальной сети. Повторители и концентраторы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КИЇВ – 2012
  Архитектура компьютерной сети. 1. Типовой состав оборудования локальной сети перейти 2. Физическая структуризация локальной сети. Повторители и концентраторы перей

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги