рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Экологические последствия орошения

Экологические последствия орошения - Курсовая Работа, раздел Сельское хозяйство, Экологические проблемы водной мелиорации Экологические Последствия Орошения. Орошение — Один Из Древнейших Способов По...

Экологические последствия орошения. Орошение — один из древнейших способов повышения продуктивности почв, а в настоящее время — одно из важнейших направлений интенсификации сельскохозяйственного производства в регионах с недостаточным и неустойчивым естественным увлажнениям.

Орошаемое земледелие опирается на определенные природные закономерности, которые должны лежать в основе любого комплекса природопреобразующих мероприятий: закон минимума; закон равнозначности и незаменимости факторов роста; закон оптимума; закон взаимодействия (совокупного действия) факторов.

Проявления этих законов при проведении мероприятий, направленных на повышение плодородия почвы и продуктивности выращиваемых культур, изучены и представлены В. Р. Вильямсом как основы научного почвоведения. Применение современных методов исследований на орошаемых массивах, проведение многофакторных стационарных полевых опытов, обеспечивающих комплексный подход к изучению изменений, сопутствующих процессу орошения, а также являющихся его следствием, позволяют установить закономерности, характерные для различных условий аридности. Полученные к настоящему времени результаты свидетельствуют, что в орошаемом земледелии в связи с интенсивным применением поливов, удобрений и средств защиты растений проявляются новые закономерности во взаимодействии экологических факторов (Лысогоров, 1971, 1981, 1991). Возникает необходимость разработки специальных мероприятий по охране окружающей природной среды.

Одно из наиболее опасных последствий орошения — засоление земель (таблица №2) (В. А. Агроэкология 2000) Таблица №2 Классификация почв по качеству засоления Состояние с/х растений, характеризующихся средней солеустойчевостью Почвы Тип засоления Содовый Хлоридно- содовый Сульфатно-содовый Хлоридный Сульфатно-хлоридный Хлоридно-сульфатный сульфатный Содержание водорастворимых солей в горизонте макс. Скопления ( слой 0-60) % Содержание водорастворимых солей в слое 0-100 см % Хорошие рост и развития, выподов нет урожай нормальный Не засоленные или слабо- засоленые Слабое угнетение, выподы растений, снижение урожая на 10-20% Слабоза-соленые 0,1-0,2 0,15-0,25 0,15-0,3 0,15-0,3 0,2-0,3 0,25-0,4 0,3-0,6 Среднее угнетение, снижение урожая на 20-25% Средне-засоленые 0,2-0,3 0,25-0,4 0,3-0,5 0,3-0,5 0,3-0,6 0,4-0,7 0,6-1 Сильное угнетение, снижение урожая на 50-80% Сильно-засоленые 0,3-0,5 0,4-0,6 0,5-0,7 0,5-0,8 0,6-1 0,7-1,2 1-2 Выживают единичные растения, урожая практически нет Солончак Ежегодно из-за засоления на планете выпадает из оборота более 300 тыс, га орошаемых земель, а общая площадь засоленных и ставших бес плодными земель достигает 25 млн га. Засоление широко распространено в районах, где издавна использовали орошение (Египет, Ирак, Индия, Пакистан и др.). Так, в долине р. Нил засолению подвержено 1,2 из 1,7 млн га (бо лее 70 %); в Ираке около 50 % орошаемых площадей; в долине р. Инд 10 из 15 млн га (67 %). В США засоленные массивы занимают более 27 %. В бывшем СССР с 1960 по 1980г. в среднем из каждой тысячи орошаемых гектаров засолялось 184 га (в том числе 141 га пашни). Общая же площадь засоленных земель достигала 3,5 млн га (в том числе более 2,5 млн га пашни), что составляло около 20 % суммарной площади орошаемых земель.

К настоящему времени в России в неудовлетворительном состоянии находится 771 тыс. га орошаемых земель, в том числе из-за недопустимой глубины залегания уровня грунтовых вод 325 тыс, га, из-за засоления — 292, из-за одновременного действия обоих предыдущих факторов — 154 тыс. га. Общая площадь учтенных засоленных земель в России составляет 38,4 млн га (19,9 % всех сельхозугодий), из которых 34 % — пашня и 66 % — солонцы.

Засоление почв, как известно, представляет собой повышение содержания в них легкорастворимых солей (карбоната натрия, хлоридов, сульфатов). Если процесс засоления обусловлен засоленностью почвообразующих пород, привносом солей грунтовыми и поверхностными водами, то засоление называют первичным или остаточным.

В естественных условиях засолением происходит за счет выпадения солей из засоленных грунтовых вод, а также в результате эолового привноса извне (моря и океаны, соленые озера). Важным источником солей в ландшафте, в том числе в грумтовых водах и почвах, являются засоленные материнские породы (особенно соляные купола). Некоторое количество солей может поступать в верхние гори зонты почвы с опадом растений-галофитов (солянок). На орошаемых массивах существенным источником солей в почвах могут быть оросительные воды. Один из основных методов оценки процесса засоления — составление соленого баланса для данной почвы или земельного массива.

Баланс представляет собой суммарный запас легкорастворимых солей в почве, равный разности между приходными статьями баланса (поступление солей из грунтовых вод, эоловый привнос солей, поступление солей из оросительных вод и минерализующихся растительных остатков, из удобрений) и его расходными статьями (опок солей из почвы в грунтовые воды с просачивающимися атмосферными осадками, вынос с оросительными водами, выдувание солей ветром с поверхности почвы, вынос солей с урожаем сельскохозяйственных культур). Принято выделять три типа соленого баланса почв: стабильный (запас солей в почвенной толще не изменяется); баланс засоления (запас солей в почве воз растает); баланс рассоления (запас солей в почвенной толще уменьшается).Неблагоприятное влияние засоления почвы на развитие сельскохозяйственных культур связано не только с повышенным осмотическим давлением почвенного раствора, ухудшением водно- физических свойств почв, особенно в провинциях содового засоления, и не благоприятным соленым составом, но и с повышенной концентрацией соединений бора, которая может достигать токсичного для растений уровня — 0,3.1,0 мг/л. Наиболее чувствительны к бору почти все плодовые культуры.

В солончаках солесодержащие минералы и легкорастворимые соли накапливаются на поверхности почвы, а в автоморфных, полугидроморфных и гидроморфных солонцах — соответственно в нижней, верхней и средней частях почвенного профиля.

Присутствие в почвах легкорастворимых солей неблагоприятно влияет на рост и развитие растений.

Большая часть зерновых культур снижает урожайность при электропроводности, составляющей 4 .6 мСм/см. для овощных и плодовых культур эти величины гораздо ниже (1 2 мСм/см). Отрицательное влияние легкорастворимых солей на растения связано с совокупным действием трех различных факторов.

Преобладающую роль обычно играет высокое осмотическое давление почвенного раствора, обусловленное возросшим содержанием растворенных солей и приводящее к ухудшению поглощения влаги растениями. Поэтому на засоленных почвах растения часто страдают от засухи даже при высокой влажности почвы.

Еще один фактор, препятствующий нормальному росту растений, — специфическое воздействие ионов Когда в листьях накапливается более 0,5 % Сl. SO4, HCO3, Na, Ca, Mg иногда NO3 и K. Когда в листьях накапливается более 0,5 % Cl или более 0,2 % а (в расчете на сухую массу), происходит обгорание листьев, они приобретают бронзовую окраску, возникают некрозы.

Предполагается, что при высокой концентрации в растворе ионов Nа и С1 в растениях нарушается процесс транспирации.

Наиболее чувствительные к хлору растения проявляют признаки угнетения при концентрации С1 в вытяжке из насыщенной почвы, составляющей 5 10 мг* экв/л. Высокая концентрация в почвенном растворе ионов Са приводит к нарушению питания растений катионами Мg и К, а высокое содержание Nа — катионами Са и Мg Присутствие соды обусловливает щелочную реакцию среды, что препятствует нормальному развитию большинства сельскохозяйственных культур.

И наконец, третий фактор, обусловливающий неблагоприятное воздействие легкорастворимых солей на растения, — резкое ухудшение физических свойств почв в присутствии катионов натрия.

При этом происходит обесструктуривание почвы, ухудшаются ее водный и воздушный режимы. Основной мелиоративный прием, направленный на повышение продуктивности засоленных почв, — промывки водой, благодаря которым при наличии дренажа из почвенного профиля удаляются легкорастворимые соли, т. е. соли, растворимость которых более 2 г/л. Из-за низкой водопроницаемости особенно плохо поддаются мелиорации почвы содового засоления, не содержащие гипса.

В таких случаях для повышения урожайности сельскохозяйственных культур целесообразен подбор солеустойчивых видов растений.

Зачастую засоление происходит при нерациональном орошении. Этот процесс называют вторичным засолением. Почвы считают засоленными, если они содержат более 0,10 % по массе токсичных для растений солей или более 0,25 % солей в плотном остатке (для безгипсовых почв). Различают много форм засоления и разновидностей засоленных почв. Процессу вторичного засоления могут подвергаться естественно засоляющиеся, остаточно-засоленные, исходно незасоленные или глубокорассоленные почвы.

Основной механизм этого процесса — привнос солей с оросительными водами в растворимом или взвешен ном состоянии и выпадение солей в почвенной толще из минерализованных грунтовых вод, уровень которых при орошении часто поднимается. Последнее явление особенно распространено на равнинных, плохо дренированных территориях. При недостаточном дренаже вторичное засоление может при вести к катастрофическим последствиям. Из-за большого накопления солей в почвах обширные массивы орошаемых земель становятся непригодными для земледелия и их приходится выводить из сельскохозяйственного использования.

В. А. Ковда выделяет следующие стадии процесса вторичного засоления почв, которые генетически связаны между собой и закономерно сочетаются в пространстве: 1) засоление почв вдоль новых каналов; 2) общее засоление орошаемой территории; 3) рассоления староорошаемых территорий при одновременном засолении некоторых внутриоазисных пространств и периферии оазисов.

Вторичное засоление почв на орошаемых участках часто сопровождается загрязнением почв тяжелыми металла ми, пестицидами, гербицидами, нитратами, соединениями бора. Все эти вещества в районах интенсивного сельскохозяйственного использования попадают в почву как из оросительных, так и из грунтовых вод. При вторичном засолении происходят существенные изменения многих химических свойств почв: одновременно с накоплением легкорастворимых солей аккумулируются гипс и карбонаты, оказывающие благоприятное воздействие на физические свойства почв; в неблагоприятную сторону изменяется состав почвенного поглощающего комплекса, в котором ионы Са замещаются ионами Mg и Na возрастает подвижность соединений калия, кремния, железа.

Наиболее эффективным способом использования земельных ресурсов в сельском хозяйстве остается орошаемое земледелие. Орошаемые земли составляют всего 14,3 % общей площади пашни планеты, но на них получают более 40 % всей сельскохозяйственной продукции.

В южных районах умеренного пояса и в субтропиках при орошении урожаи плодово-ягодных культур в 2 3 раза, а винограда, овоще-бахчевых и зерновых культур — в 3 .4 раза выше, чем без орошения. Высокая продуктивность орошаемых земель обеспечивается интенсивной природопреобразующей деятельностью человека, которая выражается в наиболее полном использовании термических ресурсов, а также геохимического потенциала почв и вод. Если первое не приводит к явным экологическим сдвигам, то изменение естественного геохимического потенциала основных при родных ресурсов любого региона закладывает тенденции нарушения эволюционно сложившегося равновесия и обусловливает возникновение экологических проблем орошаемого земледелия.

Прежде всего следует учитывать, что даже при достаточном научном обосновании приемов ведения орошаемого земледелия и соблюдении всех рекомендаций и требований ирригационной и экологической науки и практики расширение орошаемых площадей ведет к заметному росту расхода воды на испарение со всеми вытекающими отсюда последствиями.

Необходимо отчетливо представлять, насколько мощным «расточителем» водных богатств является орошаемое земледелие. Большая часть вод, направляемых на орошение, безвозвратно теряется для дальнейшего использования: они испаряются либо почвой, либо растениями. Результаты исследований, проводившихся в США, свидетельствуют, что 83 % невосполнимых потерь, возникающих при использовании водных ресурсов, приходится на орошаемое земледелие.

Суммарный водозабор на орошение по всем регионам планеты составляет примерно 1900 км воды в год. Из этого объема 1500 км теряются безвозвратно. (Однако следует отметить, что понятие «безвозвратно» все же относительно, поскольку испарившаяся влага вовлекается в круговорот воды.) Среди применяемых в настоящее время приемов интенсификации орошение — один из наиболее действенных способов создания управляемых аграрно-ирригационных ландшафтов.

При этом особого внимания требуют вопросы воздействия орошения на почвенное плодородие. Рассматривая возможные негативные последствия, возникающие при орошении, нельзя упускать из виду и такой фактор, как качество поливной воды, К настоящему времени разработана, например, система параметров допустимости к использованию воды для орошения, которые учитывают степень опасности вод различного состава. (рис. 12.1). Немаловажной причиной засоления почв является поднятие минерализованных грунтовых вод выше определенного критического уровня.

Грунтовая вода достигает его при приближении капиллярной зоны к корнеобитаемому слою. Засоление, обусловленное длительным нахождением в корнеобитаемом слое грунтовых вод, часто становится причиной заболеваний подземной части растений. В связи с этим урожайность сельскохозяйственных культур существенно снижается. Вместе с тем значительное падение уровня грунтовых вод, вызванное дренированием, также приводит к снижению урожайности возделываемых культур.

Таким об разом, объективно необходимо поддерживать оптимальный уровень грунтовых вод, т. е. УГВ, дальнейшее снижение которого не приводит к улучшению состояния растений и повышению их продуктивности. Грунтовая вода используется в то же время как дополнительный источник водоснабжения сельскохозяйственных культур (Лысогоров, 1991). Оптимальный УГВ существенно варьирует в зависимости от типа ночи, степени минерализации грунтовых вод и характера их засоленности, вида возделываемых культур и т. д. Такого рода зависимости обычно устанавливают опытным путем в конкретных природных условиях.

Несомненно, что орошение создает предпосылки для улучшения свойств почвы. Однако реализовать их можно при условии оптимального сочетания полива с комплексом агротехнических приемов (правильное чередование культур в севообороте, рациональная обработка почвы, грамотное применение различных видов удобрений). Засоленные почвы преобладают в засушливых регионах.

Однако процесс за соления возможен и при высоком увлажнении. Основная причина ускоренного засоления почв — неправильное орошение, а это возможно во всех при родных зонах. При необоснованно увеличенных нормах поляна, при потерях оросительной воды из каналов происходят повышение уровня грунтовых вод и подъем растворимых солей по капиллярам почвы. Установлено, что концентрации солей 0,10.0,15 % являются предельными для очень чувствительных к засолению культур; 0,15.0,35 % вредны для большей части культур; 0,35 .0,70 % пригодны для устойчивых культур; более 0,70 % приемлемы для очень устойчивых культур. При содержании обменного натрия 10 15 % от емкости обменных катионов растения плохо развиваются, более 20.35 % — сильно угнетаются.

Урожайность хлопчатника при слабом засолении снижается на 20 30 %, кукурузы — на 40.50, пшеницы — на 50.60 %. На среднезасоленных почвах урожайность хлопчатника уменьшается вдвое; пшеница находится в таком угнетенном со стоянии, что погибает.

Для оценки потенциальной опасности вторичного засоления введено понятие о критическом уровне грунтовых вод, при котором начинается засоление корнеобитаемого слоя почвы, приводящее к угнетению и гибели сельскохозяйственных культур. Критическую глубину залегания грунтовых вод — hкр определяют по формуле: hкр=hmax+α; где hmax — наибольшая высота капиллярного Подъема в исследуемой Почве; α —глубина распространения основной массы корней сельскохозяйственных растений; Опыт показывает, чем выше степень минерализации грунтовых вод, тем с большей глубины идет засоление почв. В среднем при минерализации грунтовых вод 10 15 г/л критическая глубина их залегания составляет 2,0 .2,5 м. При орошении рекомендуется поддерживать уровень грунтовых вод не выше этой от метки.

Для предупреждения вторичного засоления требуется устройство дренажа, проведение полива в строгом соответствии с оросительными нормами, отведение минерализованных грунтовых вод в дренажную сеть, применение полива дождеванием, создание лесных насаждений вдоль каналов. Преимущества, несомненно, имеет капельное внутрипочвенное орошение.

Для удаления солей из почвы проводят многократную промывку пресной водой. На солонцах и солонцеватых почвах (с содержанием более 5 10 % обменного натрия) рекомендуется применять гипсование или отходы от производства удобрений (фосфогипс), а также трехъярусную вспашку для перемешивания солонцового горизонта с карбонатным. Эффективный способ снижения засоленности почв — возделывание на них растений, способных поглощать 20 .50 % солей в расчете на массу сухого вещества.

К таким растениям относятся пырей удлиненный, донник, лядвенец, полевица и др. В районах орошения наглядно про являются катастрофические последствия недоучета экологических связей при неупорядоченном и необоснованном заборе воды из рек каналами. Классический пример тому — пересыхание и гибель Аральского моря, с обнажившегося дна которого на большие расстояния разносится соляная пыль. К сожалению, накапливается все больше и больше примеров того, что при бесконтрольном использовании орошаемых земель огромные площади их превращаются в бесплодные пустыни.

Как свидетельствует исторический опыт, это было присуще почти всем районам орошения. По данным ФАО, засоленные земли встречаются на территории 83 стран мира. Основная причина этих труднопоправимых изменений — нарушение равновесия в динамически сбалансированных естественных материально-энергетических круговоротах.

Нарушение равновесия наблюдается и в отношении питательных веществ орошаемых массивов. Непрерывное поступление к растениям элементов минерального питания сопряжено с увеличением в почве запасов органических веществ, прежде всего гумуса, и активной деятельностью полезных групп микроорганизмов, минерализующих органическое вещество. Оптимальная для микроорганизмов влажность почвы обычно близка к ее оптимуму для растений, поскольку в природе установилось взаимовыгодное сосуществование тех и других, что подтверждается содержанием микроорганизмов в корнеобитаемом слое почвы.

Поэтому создание оптимального для растений водного режима почвы приводит к существенному увеличению численности и активности микроорганизмов. Вследствие этого происходит ускорение процессов разложения органических веществ, в том числе гумуса. Но те же условия способствуют и ускорению новообразования гумуса, являющегося продуктом жизнедеятельности микроорганизмов в условиях обилия органического вещества и элементов минерального питания.

Таким образом, в условиях орошения в почве одновременно протекают два противоположных процесса — ускоренное разложение и активное новообразование гумуса и других органических веществ, и какой из них станет доминирующим зависит от мелиоративных и агротехнических условий (Агроэкология 2000). Многовековую историю образования гумуса обычно рассматривают как дли тельный процесс установления его равновесного содержания в почве соответственно природным условиям.

Установившееся подвижное равновесие постоянного разрушения, освобождающего энергию в кинетической форме и элементы питания для растений, и постоянного новообразования гумуса может быть нарушено и направлено в ту или иную сторону деятельностью человека. Процесс орошения не только приводит к изменению агрохимических свойств почвы, но и оказывает влияние на ее физическое состояние. Однако гранулометрический состав не претерпевает существенных изменений. В процессе орошения почва несколько обогащается илом, приносимым оросительной водой.

Происходит частичное вымывание его из пахотного слоя в более глубокие. Оросительная вода час то смывает мелкие частицы, вызывал эрозию, которая может проявляться даже при небольших уклонах полей, если сила поливной струн значительна. Кроме того, при этом вымывается гумус и доступные для растений элементы питания, могут быть выведены из строя постоянная и временная оросительные сети. К основным причинам возникновения ирригационной эрозии относят следующие: слабая закрепленность дна и откосов каналов; недостаточная ин фильтрационная способность почв; просадка грунтов, ведущая к нарушению нормального профиля канала; засорение оросительной сети; повышенный расход воды в поливных бороздах и полосах.

Все эти причины вполне устранимы при грамотном подходе к процессу орошения. Гораздо сложнее проблема отвода дренажных вод и их воздействия на поверхностные воды в районе сброса, а также на подземные воды. В среднем КПД оросительных систем во всем мире составляет всего 37 %, что свидетельствует о необходимости всестороннего совершенствования систем и технологий орошения.

Упоминавшееся выше капельное орошение, на которое в первой половине 80-х годов в мировом масштабе приходилось около 420 тыс. га, позволяет значительно снизить расход воды (он на 20 .25 % меньше, чем при обычном дождевании, и на 40 60 % —чем при поверхностном поливе). Применяется и так называемое «кувшинное орошение» (например, в Бразилии, Индии). Принципиально важно, что стремлению расширять оросительные системы все больше противопоставляются вопросы эффективности их функционирования.

Б. А. Зимовец и др. (1998) предложили систему экологических ограничений на антропогенные воздействия, связанные с возможностью деградации почв при орошении. данная система включает экологические ограничения и требования, связанные с возможностью: - деградации физических свойств почв при орошении; -развития засоления, осолонцевания и ощелачивания почв; - подкисления почв; - развития подтопления и заболачивания почв; - развития оросительной эрозии почв; - развития дегумификации почв; - необратимого обеднения минералогического состава почв; - развития загрязнения почв; - неблагоприятного изменения численности и видового состава биоты в орошаемых почвах.

Экологически безопасное функционирование орошаемых агроэкосистем может быть достигнуто только при условии сбалансированного взаимодействия природных и антропогенных факторов с учетом: 1. требуемых гидротермического, воз душного, окислительно-восстановительного и питательного режимов почв в соответствии с фазами развития возделываемых сельскохозяйственных культур или агрофитоценозов; 2. оптимальных агро- и гидромелиоративных нагрузок на орошаемые почвы, не приводящих к деградации последних; 3. необходимых и допустимых агро- и гидромелиоративных воздействий на почвы в естественно или искусственно гидрогеологически и геохимически подчиненных по отношению к орошаемому агроценозу ландшафтах, не вызывающих деградации указанных почв; 4. допустимых изменений гидрологического и геохимического режимов грунтовых и подземных вод (в первую очередь пресных питьевых, различных минеральных вод и иных); 5. нормированных изменений гидрологического и геохимического режимов поверхностных вод в районах водозабора, сброса и последующего транзита коллекторно-дренажных вод, обеспечивающих условия жизни различных гидробионтов и человека; 6. поддержания необходимого или допустимого санитарно-гигиенического состояния всех компонентов данного агроценоза и подчиненных по отношению к нему ландшафтов; 7. сохранения состава основных и уникальных видов растений и животных (поддержание биоразнообразия) региона, в котором создается орошаемый агроценоз, а также в районах сброса и транзита коллекторно-дренажного стока; 8. технической надежности эксплуатации инженерных систем (Зимовец и др 1998). Для оценки экологической допусти мости возможных воздействий на орошаемые почвы разработаны критерии и параметры нормального и неблагоприятного состояния почв, основанные на сумме агрофизических, физико-химических, биохимических, гидрохимических показателей и показателей эрозионной опасности. 2.2.

– Конец работы –

Эта тема принадлежит разделу:

Экологические проблемы водной мелиорации

Водные мелиорации издревле волновали души людей.Оросительные каналы строили ещё древние египтяне, догадавшись таким способом повысить плодородие… С этой площади земледельцы собирают более 50% продукции растениеводства.Однако… Все это резко снижает эффективность мелиораций и вызывает негативное их восприятие общественностью.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Экологические последствия орошения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Научные проблемы комплексной мелиорации земель и вод
Научные проблемы комплексной мелиорации земель и вод. Под комплексными мелиорациями земель и вод понимается повышение плодородия земель, улучшение качества природных вод и водохозяйственной обстано

Экологические проблемы орошения и осушения почв
Экологические проблемы орошения и осушения почв. Естественные свойства почв различных районов нередко малоблагоприятны для эффективного сельскохозяйственного использования. Многолетняя мерзл

Экологические последствия осушения
Экологические последствия осушения. Осушение земель возникло вместе с сельским хозяйством. Впервые о нем упоминается в письменных источниках четырехтысячелетней давности. Согласно ист

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги