рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Реферат Направление подготовки туризм

Реферат Направление подготовки туризм - раздел Туризм, Министерство Образования И Науки Рф ...

Министерство образования и науки РФ

Санкт-Петербургский педагогический университет им. А.И.Герцена

Факультет управления

Направление подготовки туризм

Кафедра социального менеджмента

 

Реферат

«СМО с ограниченным временем ожидания. Замкнутые СМО»

 

Выполнил:

Студентка I курса

Мартьянова А.Г.

Преподаватель:

Кандидат физико-математических наук доцент

Светлаков А.Н.

Санкт-Петербург, 2013

  … 1. Основы теории массового обслуживания.................................................. 3

Введение

 

В данном курсе мы будем рассматривать различные системы массового обслуживания (СМО) и сети массового обслуживания (СеМО).

Под системой массового обслуживания (СМО) понимают динамическую систему, предназначенную для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы.

Модели СМО удобны для описания отдельных подсистем современных вычислительных систем, таких как подсистема процессор - основная память, канал ввода-вывода и т. д. Вычислительная система в целом представляет собой совокупность взаимосвязанных подсистем, взаимодействие которых носит вероятностный характер. Заявка на решение некоторой задачи, поступающая в вычислительную систему, проходит последовательность этапов счета, обращения к внешним запоминающим устройствам и устройствам ввода-вывода. После выполнения некоторой последовательности таких этапов, число и продолжительность которых зависит от трудоемкости программы, заявка считается обслуженной и покидает вычислительную систему. Таким образом, вычислительную систему в целом можно представлять совокупностью СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств, входящих в состав системы.

Совокупность взаимосвязанных СМО называется сетью массового обслуживания (стохастической сетью).

Для начала мы рассмотрим основы теории СМО, затем перейдем к ознакомлению в подробном содержании к СМО с ожиданием и замкнутым СМО. Также в курс включена практическая часть, в которой мы подробно познакомимся с тем, как применить теорию на практике.


1. Основы теории массового обслуживания

 

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модельотражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности.

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

 

1.1 Понятие случайного процесса

 

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс, если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры:

1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

 

1.2 Марковский случайный процесс

 

Случайный процесс, протекающий в системе, называется Марковским, если для любого момента времени t0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t0 система находится в определенном состоянии S0. Мы знаем характеристики состояния системы в настоящем и все, что было при t<t0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет при t>t0? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое время система S окажется в состоянии S1 или останется в состоянии S0 и т.д.

Пример. Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество «красных» самолетов, y – количество «синих» самолетов. К моменту времени t0 количество сохранившихся (не сбитых) самолетов соответственно – x0, y0. Нас интересует вероятность того, что в момент времени численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времени t0, а не от того, когда и в какой последовательности погибали сбитые до момента t0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предыстории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием, если его возможные состояния S1, S2, … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Далее рассматриваются только процессы с дискретным состоянием и непрерывным временем.

Пример. Технологическая система (участок) S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S0 - оба станка исправны;

S1 - первый станок ремонтируется, второй исправен;

S2 - второй станок ремонтируется, первый исправен;

S3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний. Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в состояние. Для нашего примера граф состояний приведен на рис. 1.

 

Рис. 1. Граф состояний системы

 

Примечание. Переход из состояния S0 в S3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

 

1.3 Потоки событий

 

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 2.

 

Рис. 2. Изображение потока событий на оси времени

 

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий ()– это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.

В частности, интенсивность стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий, если для любых двух непересекающихся участков времени и (см. рис. 2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от другаи вызваны каждое своими собственными причинами.

Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами:

1) стационарен;

2) ординарен;

3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью:

 

 

где - параметр показательного закона.

Для случайной величины T, имеющей показательное распределение, математическое ожидание есть величина, обратная параметру, а среднее квадратичное отклонение равно математическому ожиданию:

 

 

1.4 Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний

 

Рассматривая Марковские процессы с дискретными состояниями и непрерывным временем, подразумевается, что все переходы системы S из состояния в состояние происходят под действием простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.). Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в системе, будет Марковским.

Итак, на систему, находящуюся в состоянии , действует простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния в состояние (на графе состояний по стрелке ).

Для наглядности на графе состояний системы у каждой дуги проставляют интенсивности того потока событий, который переводит систему по данной дуге (стрелке). - интенсивность потока событий, переводящий систему из состояния в . Такой граф называется размеченным. Для нашего примера размеченный граф приведен на рис. 3.

 

Рис. 3. Размеченный граф состояний системы

 

На этом рисунке - интенсивности потока отказов; - интенсивности потока восстановлений.

Предполагаем, что среднее время ремонта станка не зависит от того, ремонтируется ли один станок или оба сразу. Т.е. ремонтом каждого станка занят отдельный специалист.

Пусть система находится в состоянии S0. В состояние S1 ее переводит поток отказов первого станка. Его интенсивность равна:

 

 

где - среднее время безотказной работы первого станка.

Из состояния S1 в S0 систему переводит поток «окончаний ремонтов» первого станка. Его интенсивность равна:

 

 

где - среднее время ремонта первого станка.

Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа. Имея в своем распоряжении размеченный граф состояний системы, строится математическая модель данного процесса.

Пусть рассматриваемая система S имеет -возможных состояний . Вероятность -го состояния - это вероятность того, что в момент времени , система будет находиться в состоянии . Очевидно, что для любого момента времени сумма всех вероятностей состояний равна единице:

 

Для нахождения всех вероятностей состояний как функций времени составляются и решаются уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний. Правило составления этих уравнений приведем здесь без доказательств. Но прежде, чем его приводить, объясним понятие финальной вероятности состояния.

Что будет происходить с вероятностями состояний при ? Будут ли стремиться к каким-либо пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний.

 

 

где - конечное число состояний системы.

Финальные вероятности состояний – это уже не переменные величины (функции времени), а постоянные числа. Очевидно, что:

 

Финальная вероятность состояния – это по–существу среднее относительное время пребывания системы в этом состоянии.

Например, система S имеет три состояния S1, S2 и S3. Их финальные вероятности равны соответственно 0,2; 0,3 и 0,5. Это значит, что система в предельном стационарном состоянии в среднем 2/10 времени проводит в состоянии S1, 3/10 – в состоянии S2 и 5/10 – в состоянии S3.

Правило составления системы уравнений Колмогорова: в каждом уравнении системы в левой его части стоит финальная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а в правой его части– сумма произведений интенсивностей всех потоков, входящих в -е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пользуясь этим правилом, напишем систему уравнений для нашего примера:

 

.

 

Эту систему четырех уравнений с четырьмя неизвестными , казалось бы, можно вполне решить. Но эти уравнения однородны (не имеют свободного члена), и, значит, определяют неизвестные только с точностью до произвольного множителя. Однако можно воспользоваться нормировочным условием: и с его помощью решить систему. При этом одно (любое) из уравнений можно отбросить (оно вытекает как следствие из остальных).

Продолжение примера. Пусть значения интенсивностей потоков равны: .

Четвертое уравнение отбрасываем, добавляя вместо него нормировочное условие:

 

.

 

.

Т.е. в предельном, стационарном режиме система S в среднем 40% времени будет проводить в состоянии S0 (оба станка исправны), 20% - в состоянии S1 (первый станок ремонтируется, второй работает), 27% - в состоянии S2 (второй станок ремонтируется, первый работает), 13% - в состоянии S3 (оба станка ремонтируются). Знание этих финальных вероятностей может помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов.

Пусть система S в состоянии S0 (полностью исправна) приносит в единицу времени доход 8 условных единиц, в состоянии S1 – доход 3 условные единицы, в состоянии S2 – доход 5 условных единиц, в состоянии S3 – не приносит дохода. Тогда в предельном, стационарном режиме средний доход в единицу времени будет равен: условных единиц.

Станок 1 ремонтируется долю времени, равную: . Станок 2 ремонтируется долю времени, равную: . Возникает задача оптимизации. Пусть мы можем уменьшить среднее время ремонта первого или второго станка (или обоих), но это нам обойдется в определенную сумму. Спрашивается, окупит ли увеличение дохода, связанное с ускорением ремонта, повышенные расходы на ремонт? Нужно будет решить систему четырех уравнений с четырьмя неизвестными.

 

1.5 Задачи теории массового обслуживания

 

Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, станочные и другие технологические системы, системы управления гибких производственных систем и т.д.

Каждая СМО состоит из какого–то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого–то потока заявок (требований), поступающих в какие-то случайные моменты времени.

Обслуживание заявки продолжается какое–то, вообще говоря, случайное время, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени обслуживания приводит к тому, что в какие–то периоды времени на входе СМО скапливается излишне большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными). В другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО – случайный процесс с дискретными состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких-то событий (прихода новой заявки, окончания обслуживания, момента, когда заявка, которой надоело ждать, покидает очередь).

Предмет теории массового обслуживания – построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.

Математический анализ работы СМО очень облегчается, если процесс этой работы Марковский, т.е. потоки событий, переводящие систему из состояния в состояние – простейшие. Иначе математическое описание процесса очень усложняется и его редко удается довести до конкретных аналитических зависимостей. На практике не Марковские процессы с приближением приводятся к Марковским. Приведенный далее математический аппарат описывает Марковские процессы.

 

1.6 Классификация систем массового обслуживания

 

Первое деление (по наличию очередей):

1. СМО с отказами;

2. СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередьюзаявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

· СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);

· СМО с обслуживанием с приоритетом, т.е. некоторые заявки обслуживаются вне очереди и т.д.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Классификация СМО далеко не ограничивается приведенными разновидностями, но этого достаточно.


Системы массового обслуживания с ожиданием

Одноканальная СМО с ожиданием

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом m, т.е. если заявка пришла в момент,… Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как… — канал свободен;

Многоканальная СМО с ожиданием

Состояния системы нумеруются по числу заявок, связанных системой: нет очереди: — все каналы свободны;

Замкнутые СМО

В замкнутой СМО циркулирует одно и то же конечное число потенциальных требований. Пока потенциальное требование не реализовалось в качестве… Пусть n - число каналов обслуживания, s - число потенциальных заявок, n<s,… ρ=.

Решение задачи

Два рабочих обслуживают группу из четырех станков. Остановки работающего станка происходят в среднем через 30 мин. Среднее время наладки составляет… Найдите среднюю долю свободного времени для каждого рабочего и среднее время… Найдите те же характеристики для системы, в которой:

Заключение

Выше были рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Возможность применения теории принятия решений в системах массового обслуживания определяется следующими факторами:

1. Количество заявок в системе (которая рассматривается как СМО) должно быть достаточно велико (массово).

2. Все заявки, поступающие на вход СМО, должны быть однотипными.

3. Для расчетов по формулам необходимо знать законы, определяющие поступление заявок и интенсивность их обработки. Более того, потоки заявок должны быть Пуассоновскими.

4. Структура СМО, т.е. набор поступающих требований и последовательность обработки заявки, должна быть жестко зафиксирована.

5. Необходимо исключить из системы субъектов или описывать их как требования с постоянной интенсивностью обработки.

К перечисленным выше ограничениям можно добавить еще одно, оказывающее сильное влияние на размерность и сложность математической модели.

6. Количество используемых приоритетов должно быть минимальным. Приоритеты заявок должны быть постоянными, т.е. они не могут меняться в процессе обработки внутри СМО.

В ходе выполнения работы была достигнута основная цель – изучен основной материал «СМО с ограниченным временем ожидания» и «Замкнутые СМО», которая была поставлена преподавателем учебной дисциплины. Также мы ознакомились применением полученных знаний на практике, т.е. закрепили пройденный материал.


Список литературы

1) http://www.5ballov.ru.

2) http://www.studentport.ru.

3) http://vse5ki.ru.

4) http://revolution.allbest.ru.

5) Фомин Г.П. Математические методы и модели в коммерческой деятельности. М: Финансы и статистика, 2001.

6) Гмурман В.Е. Теория вероятностей и математическая статистика. М: Высшая школа, 2001.

7) Советов Б.А., Яковлев С.А. Моделирование систем. М: Высшая школа, 1985.

8) Лифшиц А.Л. Статистическое моделирование СМО. М., 1978.

9) Вентцель Е.С. Исследование операций. М: Наука, 1980.

10) Вентцель Е.С., Овчаров Л.А. Теория вероятностей и её инженерные приложения. М: Наука, 1988.

– Конец работы –

Используемые теги: Реферат, направление, готовки, туризм0.068

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Реферат Направление подготовки туризм

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Направление подготовки 030900 Юриспруденция Квалификация (степень) выпускника бакалавр Для всех профилей подготовки
высшего профессионального образования... Омская юридическая академия... ОДОБРЕНО на заседании кафедры трудового права протокол от г Зав кафедрой трудового права...

ОФП. Цели и задачи. Специальная физическая подготовка. Профессионально-прикладная физическая подготовка. Спортивная подготовка. Цели и задачи
В основе общей физической подготовки может быть любой вид спорта или отдельный комплекс упражнений, например гимнастика, бег, бодибилдинг, аэробика,… Цели и задачи общей физической подготовки 1. Здоровье. Общая физическая подготовка нужна в первую очередь для укрепления здоровья.

Тестовые задания по дисциплине по направлению подготовки - 080100 Экономика
Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования... Уральский государственный университет путей сообщения...

Трансперсональная психология – специфика направления и подготовка специалистов
Объект исследовательских и практических парадигм и проектов трансперсональной психологии - творческий, самосовершенствующийся, стремящийся к полной… Однако, объектом изучения и воздействия этих методов и инструментов все более… За рамки этой работы были вынесены базовые, априорные (изначально, еще до рождения человека присутствующие в его…

ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ Подготовка бакалавров: Направление – “Теплоэнергетика и теплотехника” Профиль – “Энергетика теплотехнологий”
Подготовка бакалавров Направление Теплоэнергетика и теплотехника... Профиль Энергетика теплотехнологий...

ПО ДИСЦИПЛИНЕ Социология Для подготовки дипломированного специалиста по направлению Машины и оборудование лесного комплекса
Сыктывкарский лесной институт филиал... ГОУВПО Санкт Петербургская государственная лесотехническая академия... имени С М Кирова...

Специальная физическая подготовка и распределение средств в учебном процессе для гимнастов групп начальной подготовки второго года обучения
Специальная двигательная подготовка, включающая сочетание движений различными частями тела (координация движений) обучение умению оценивать движения… Формирование правильного стиля выполнения гимнастических упражнений. Привитие… От того, насколько хорошо развиты эти качества у гимнаста в значительной степени зависят и успехи в овладении сложной…

Реферат по делопроизводству с вопросами: "Подготовка документов к архивному хранению", "Правила оформления реквизитов №№16, 19, 20, 22", "Контракты (договоры)"
Экспертиза ценности документов в делопроизводстве проводится при составлении номенклатуры дел, их формировании. Для организации и проведения экспертизы ценности документов, отбора и… На экспертные комиссии кроме организации ежегодного отбора документов на хранение возлагается: рассмотрение годовых…

Формирование общественно-государственной системы управления туризмом на местном уровне на примере самодеятельного спортивно-оздоровительного туризма в Томске и Томской области
На сферу туризма в 2000 году приходилось около 6 мирового валового национального продукта, 7 мировых инвестиций, каждое 16-е рабочее место, 11… В 1995 году туристская общественность нашей страны и города Томска отметила… За эти годы, наряду с развитием классического варианта туризма сформировалось и окрепло новое уникальное движение…

Типы и направления в туризме
Для этогонеобходимо аргументировать и обосновать оформление проектов предложений ,требующих инвестиций. Для этих и некоторых других целей применяетсябизнес-план. Туристический… Туристический бизнес привлекателен для предпринимателей последующим причинам - небольшие стартовыеинвестиции -…

0.048
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам