рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математическое описание транспортного потока

Математическое описание транспортного потока - раздел Транспорт, ОРГАНИЗАЦИЯ ДОРОЖНОГО ДВИЖЕНИЯ Моделирование Транспортного Потока. При Исследованиях И Проек­тировании Орган...

Моделирование транспортного потока. При исследованиях и проек­тировании организации движения приходится прибегать к описанию транспортных потоков математическими методами. Первостепенными задачами, послужившими развитию моделирования транспортных по­токов, явились изучение и обоснование пропускной способности до­рог и их пересечений. Поведение транспортного потока очень измен­чиво и зависит от действия многих факторов и их сочетаний. Наряду с техническими факторами (транспортные средства, дорога) решающее влияние на него оказывают поведение людей (водителей, пешеходов), а также состояние среды движения.

Основы математического моделирования закономерностей дорож­ного движения были заложены в 1912 г. русским ученым, профессором Г. Д. Дубелиром. Первая попытка обобщить математические исследо­вания транспортных потоков и представить их в виде самостоятельно­го раздела прикладной математики была сделана Ф. Хейтом. Дальней­шие исследования и разработки в этой области нашли отражение в ра­ботах многих зарубежных и отечественных ученых.

Известные и нашедшие практическое применение в организации дорожного движения математические модели можно разделить на две группы в зависимости от подхода: детерминированные и вероятност­ные (стохастические).

К детерминированным относятся модели, в основе которых лежит функциональная зависимость между отдельными показателями, напри­мер, скоростью и дистанцией между автомобилями в потоке. При этом принимается, что все автомобили удалены друг от друга на одинаковое расстояние.

Стохастические модели отличаются большей объективностью. В них транспортный поток рассматривается как вероятностный (случайный) процесс. Например, распределение временных интервалов между ав­томобилями в потоке может приниматься не строго определенным, а случайным.

Детерминированные модели. Простейшей математической моделью, описывающей поток автомобилей, является так называемая упрощен­ная динамическая модель. Ее применяют для определения максималь­но возможной интенсивности движения по одной полосе дороги Na max при скорости va:

, (2.2)

где А – коэффициент размерности.

При измерении скорости в километрах в час, а динамического габа­рита в метрах формула (2.2) является выражением для определения про­пускной способности полосы

. (2.3)

Данная математическая модель составлена на основании двух уп­рощающих допущений: скорость всех транспортных единиц в потоке одинакова; транспортные средства однотипны, т. е. имеют равные ди­намические габариты. Динамический габарит Lа транспортного сред­ства определяют как сумму длины транспортного средства lа, дистан­ции безопасности d и зазора l0 до остановившегося впереди автомоби­ля. Зазор lо для легковых автомобилей колеблется в пределах 1 – 3 м.

Рассмотрим три применяемых разными авторами подхода к опре­делению динамического габарита LД

1. При расчете исходя из минимальной теоретической дистанции безопасности принимают абсолютно равными тормозные свойства пары автомобилей и учитывают только время реакции tр ведомого во­дителя. Тогда , а уравнение (2.2) приобретает линейный характер. В этом случае возможная интенсивность транспортного по­тока не имеет предела по мере увеличения скорости. Однако это не со­ответствует реальным характеристикам водителей и приводит к завы­шению возможной интенсивности потока. Здесь главную роль играет практическое значительное увеличение tp при высоких скоростях.

2. При расчете на "полную безопасность" исходят из того, что ди­станция d должна быть равна полному остановочному пути ведомого автомобиля So2. Тогда динамический габарит

,  

В упрощенной формуле не выделен отрезок, проходимый за время нарастания замедления, а учитывается только установившееся замед­ление ja. В этом случае уравнение (2.2) приобретает вид квадратичной функции, а интенсивность имеет предел при определенном значении скорости va (скорости транспортного потока). Такой подход больше соответствует требованиям обеспечения безопасности движения при высоких скоростях (более 90 км/ч).

3. Наиболее реальный подход основан на той предпосылке, что при расчете дистанции безопасности d надо учитывать разницу тормозных путей (или замедлений) автомобилей, так как "лидер" в процессе тор­можения также перемещается на расстояние, равное своему тормозно­му пути. Более детально это будет рассмотрено в подразделе 2.5.

В результате изучения транспортных потоков высокой плотности и специальных экспериментов, проведенных американскими специали­стами, была предложена теория "следования за лидером", математи­ческим выражением которой является микроскопическая модель транс­портного потока. Микроскопической ее называют потому, что она рас­сматривает элемент потока – пару следующих друг за другом автомо­билей. Особенностью этой модели является то, что в ней отражены за­кономерности комплекса ВАДС и, в частности, психологический ас­пект управления автомобилями. Он заключается в том, что при движе­нии в плотном транспортном потоке действия водителя обусловлены изменениями скорости лидирующего (ведущего) автомобиля и дистан­ции до него в данный момент.

Экспериментальная проверка основного уравнения осуществлялась несколькими учеными методом натурного имитационного эксперимен­та с помощью двух автомобилей, оборудованных аппаратурой для из­мерения значений параметров уравнения. Дистанцию между автомо­билями определяли киносъемкой или специальной амортизирующей лебедкой, которая связывала оба автомобиля. Однако такой экспери­мент уже в своей постановке содержит известную искусственность, ис­кажающую реальный процесс. Это заключается, прежде всего, в специ­альном подборе водителей, автомобилей и задании определенного ре­жима движения. Кроме того, относительно малое число замеров не по­зволяет охватить все многообразие ситуаций, возникающих в реальном транспортном потоке. Дорожные условия и общая транспортная ситу­ация рассматриваются в данной модели не в качестве отдельных пара­метров, а как проявляющиеся в значении скорости движения. Уравне­ние теории следования за лидером описывает взаимодействие между автомобилями с учетом реакции водителя на изменения в транспорт­ном потоке, называемые стимулами.

К моделям, рассматривающим поток в целом и называемым макро­скопическими, относят, например, модели гидродинамической теории.

Наиболее известны две из них, основанные на использовании анало­гии в поведении транспортного потока и потока жидкости. Первая ос­нована на уравнении неразрывности, которое обусловливает постоян­ство количества жидкости при ее протекании по водостоку, и в обозна­чениях, принятых для транспортного потока, в результате преобразо­ваний и упрощений характеризуется зависимостью:

,  

где va – скорость, подлежащая экспериментальному определению; qа mах – плотность транспортного потока при заторе (va = 0).

Вторая гидродинамическая модель использует известное из гидрав­лики понятие о потенциале давления жидкости и предполагает, что дви­жение автомобиля выражается в виде функции некоторого потенциала давления, зависящего от дорожных условий, состояния окружающей среды и психофизиологического состояния водителя.

Стохастические модели. Для решения некоторых задач организации дорожного движения необходимо располагать стохастическими харак­теристиками параметров транспортных потоков в зоне пересечений или на других контролируемых участках дорог. Исследованиями установле­но, что для описания потоков сравнительно малой интенсивности, ха­рактеризующей вероятность проезда определенного числа транспорт­ных средств через сечение дороги, применимо уравнение (распределе­ние) Пуассона

, (2.4)

где Pn(t) – вероятность проезда n-го числа автомобилей за время t; λ – основной параметр распределения (интенсивность транспортного потока), авт.с; t – длительность отрезков наблюдения, с; n – число наблюдаемых автомоби­лей.

Практически для целей управления движением более необходимо располагать данными о характере распределения временных интервалов между следующими друг за другом транспортными средствами. Если появление автомобилей характеризуется распределением (2.4), то интер­валы между автомобилями распределены по экспоненциальному закону

,  

где F(t) – плотность распределения

Следует заметить, что в транспортном потоке физически невозмож­но появление интервалов, меньших, чем соответствующие длине ти­пичного транспортного средства (например, 4 – 5 м для потока легко­вых автомобилей). Поэтому более правильным для описания распре­деления временных интервалов оказывается использование модели смещенного экспоненциального закона:

,  

Упомянутые модели совпадают с натурными наблюдениями для однородных потоков, главным образом состоящих из легковых авто­мобилей. При смешанном потоке, а также воздействии некоторых внешних факторов распределение Пуассона не дает удовлетворитель­ных результатов, и в этом случае может быть применено гамма-распре­деление Пирсона III типа или распределение Эрланга.

Движение транспортных средств по дорогам в потоке большой ин­тенсивности и особенно в зоне пересечений может быть рассмотрено на основе теории массового обслуживания. Задачи, решаемые с помо­щью этой теории, обычно сводятся к определению максимального числа "заявок", а также определению очереди в системе по истечении опре­деленного промежутка времени. Применительно к транспортной зада­че это означает возможность определения пропускной способности пересечения, задержек автомобилей и возникающих перед перекрест­ком очередей. Под "заявкой" понимают появление в сечении дороги одного транспортного средства.

При анализе закономерностей дорожного движения, а также при решении практических задач ОДД возникает необходимость исполь­зования взаимозависимостей характеристик транспортного потока. Взаимосвязь интенсивности, скорости и плотности потока на одной по­лосе дороги графически может быть изображена в виде так называемой основной диаграммы транспортного потока (рис. 2.8), отражающей за­висимость

,  

Основная диаграмма отражает изменение состояния однорядного транспортного потока преимущественно легковых автомобилей в за­висимости от увеличения его интенсивности и плотности. Левая часть кривой (показана сплошной линией) отражает устойчивое состояние потока, при котором по мере увеличения плотности транспортный по­ток проходит фазы свободного, затем частично связанного и наконец свя­занного движения, достигая точки максимально возможной интенсивности, т. е. пропускной способности (точка Nmax = Рa на рис. 2.8). В процессе этих изменений скорость потока падает – она характеризует­ся тангенсом угла наклона а радиус-вектора, проведенного от точки 0 к любой точке кривой, характеризующей изменение Na. Соответствую­щие точке Na max = Рa значения плотности и скорости потока считаются оптимальными по пропускной способности (qа опт и va опт). При даль­нейшем росте плотности (за точкой Ра перегиба кривой) поток стано­вится неустойчивым (эта ветвь кривой показана прерывистой линией).

Рис. 2.8. Основная диаграмма транспортного потока: Z– Коэффициент (уровень) загрузки

Переход потока в неустойчивое состояние происходит вследствие несинхронности действий водителей для поддержания дистанции бе­зопасности (действия "торможение–разгон") на любом участке пути и особенно проявляется при неблагоприятных погодных условиях. Все это создает "пульсирующий" (неустойчивый) поток.

Резкое торможение потока (находящегося в режиме, соответствую­щем точке А) и переход его в результате торможений к состоянию по скорости и плотности в соответствующее, например, точке В положе­ние вызывает так называемую "ударную волну" (показана пунктиром АВ), распространяющуюся навстречу направлению потока со скорос­тью, характеризуемой тангенсом угла B. "Ударная волна" является, в частности, источником возникновения попутных цепных столкнове­ний, типичных для плотных транспортных потоков.

В точках 0 и qa max интенсивность движения Na = 0, т. е. соответ­ственно на дороге нет транспортных средств или поток находится в со­стоянии затора (неподвижности).

Радиус-вектор, проведенный из точки 0 в направлении любой точ­ки на кривой (например, А или В), характеризующей Na, определяет значение средней скорости потока .

На графике (см. рис. 2.8) показаны для примера две точки, харак­терные: А – для устойчивого движения транспортного потока; В – для неустойчивого, приближающегося к заторовому состоянию потока. Угол наклона радиус-вектора в первой точке а1 = 60° (tg α= 1,77), а во второй а2 = 15° (tg α = 0,26). Скорость в точке В(~9,9 км/ч) меньше, чем в точке А (~ 67 км/ч), в 6,8 раза.

Необходимо, однако, отметить, что основная диаграмма не может отразить всю сложность процессов, происходящих в транспортном по­токе, и характеризует его надежно лишь при однородном составе и нор­мальном состоянии дороги и внешней среды. При изменении состоя­ния покрытия, условий видимости для водителей, состава потока, вер­тикального и горизонтального профилей дороги изменяется характер диаграммы. Диаграмма транспортного потока может быть построена и в других координатах, например vaqa и Nava.

– Конец работы –

Эта тема принадлежит разделу:

ОРГАНИЗАЦИЯ ДОРОЖНОГО ДВИЖЕНИЯ

На сайте allrefs.net читайте: "ОРГАНИЗАЦИЯ ДОРОЖНОГО ДВИЖЕНИЯ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математическое описание транспортного потока

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ДВИЖЕНИЯ
5-е издание, переработанное и дополненное Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по специальности &

Принятые сокращения
  АСУД – автоматизированная система управления движением БД – безопасность дорожного движения ВАДС – система "Водитель – автомобиль – дорога – среда" ГИБДД

Автомобилизация и дорожное движение
Автомобильный транспорт прочно вошел в современную жизнь, обеспечивая большой объем перевозок во всех сферах человеческой дея­тельности. Промышленность, строительная индустрия, сельское хозяй­ство,

Основные направления деятельности по обеспечению безопасности и организации дорожного движения
Для обеспечения эффективного и безопасного функционирования системы ВАДС необходимо совершенствовать подготовку водителей, улучшать конструкцию и техническое состояние транспортных средств, расширя

Правила дорожного движения и международные Конвенции по дорожному движению
Необходимость регламентации дорожного движения возникла дав­но, а с появлением автомобилей появились и первые автомобильные правила, которые были введены в 1893 г. во Франции. В России же ми­нистр

Государственная инспекция безопасности дорожного движения, службы организации дорожного движения
В 1934 г. в системе Центрального управления шоссейных и грунто­вых дорог и автомобильного транспорта при Совете Народных Комис­саров СССР была создана Государственная автомобильная инспекция как ор

Транспортный поток
При формировании информации о состоянии дорожного движе­ния в первую очередь необходимы данные, характеризующие транс­портный поток. Многолетний зарубежный и отечественный опыт научных исс

Пешеходный поток
К основным показателям, характеризующим движение пешеходов относятся его интенсивность, плотность и скорость. Интенсивность пешеходного потока Nпеш колеблется в очень шир

Пропускная способность дороги
Важнейшим критерием, характеризующим функционирование пу­тей сообщения, является их пропускная способность. В теории проек­тирования автомобильных дорог и трудах по организации движения применяется

Определение пропускной способности дороги
Расчетное определение. Теоретическое (расчетное) определение про­пускной способности дороги основано на использовании различных ма­тематических моделей, интерпретирующих транспортный поток. При рас

Улично-дорожная сеть
Планировочные особенности и геометрические параметры путей сообщения оказывают решающее влияние на характеристики транспор­тных и пешеходных потоков и общее состояние дорожного движения в городе ил

Методика натурных исследований
Обследование дорожных условий. Для исследования движения транс­портных средств и пешеходов и объективного анализа получаемых ре­зультатов необходимо располагать достаточно полными данными о дорожны

Протокол опроса водителей на дороге
Контрольный пункт № ___________ Дата ___________ Начало ____________ Конец ____________ № п/п Модель автомобиля Регистрационный зна

Протокол обследования движения
Дата__________ Контрольный пост ____________ Начало ____________ Окончание ________________ Регистрационный знак Модель автомобиля Время

Протокол измерения продолжительности задержек
Место наблюдения _____________ Дата________ Время__________     Время, ч, мин     Число остановившихся транспортных средств

Протокол изучения скорости и задержек на маршруте
Дата 13.03.2001 г. Маршрут Рынок – просп. Победы Рейс № 5 Пункт отметки Показание счетчика спидометра, км Расстояни

Протокол регистрации данных для изучения интенсивности движения
Номер направление заезда Время в пути, мин Число автомобилей А В С 1N

Аппаратура для исследования дорожного движения
Возможность получить достаточную по объему и точности инфор­мацию о параметрах дорожного движения существенно зависит от тех­нической оснащенности исследований. Визуальные наблюдения с се­кундомеро

Изучение статистики дорожно-транспортных происшествий
Важной основой всей работы по организации и обеспечению безо­пасности дорожного движения является анализ данных о ДТП. В России действуют Правила учета дорожно-транспортных проис­шествий,

Анализ конфликтных точек
Исследования ДТП показали, что наибольшее их число происхо­дит в так называемых конфликтных точках, т. е. в местах, где в одном уровне пересекаются траектории движения транспортных средств или тран

Исследование конфликтных ситуаций
Многообразие факторов, реально влияющих на безопасность дви­жения в условных конфликтных точках, не позволяет на основе их ка­мерального анализа сделать исчерпывающие выводы о характере и сте­пени

Основные направления и способы организации дорожного движения
По мере развития автомобилизации в течение десятилетий в мире накапливался опыт обеспечения безопасности, эффективности и удоб­ства дорожного движения в городах и на автомобильных дорогах мето­дами

Формирование однородных транспортных потоков
Отрицательное влияние неоднородности состава транспортных потоков на дорожное движение было отмечено в главе 2. Создание по возможности однородных транспортных потоков способствует вырав­ниванию ск

Оптимизация скоростного режима движения
Под оптимизацией скоростного режима следует понимать воздей­ствие на скорости транспортных средств в потоке для повышения бе­зопасности движения или пропускной способности. Таким образом, в зависим

Методы оценки эффективности (качества) организации дорожного движения
При рассмотрении основного содержания инженерной деятельно­сти по организации дорожного движения (см. подразд. 1.2) была отме­чена необходимость оценивать количественными показателями резуль­таты в

Внедрение АСУД
В условиях высокого уровня автомобилизации решение задач ОДД, особенно в крупных городах, требует обязательного применения АСУД. Управление движением в условиях предельного насыщения улиц и до­рог

Проектирование организации дорожного движения
Исследования дорожного движения позволяют сделать общие вы­воды о том, что, во-первых, качественная его организация является важ­нейшим условием эффективного транспортного процесса на УДС в го­рода

Движение на перекрестках
Места УДС, где в одном уровне пересекаются дороги, а следователь­но, транспортные и пешеходные потоки, называются перекрестками. В специальной литературе встречаются и другие термины для опреде­лен

Одностороннее движение
Введение одностороннего движения по двум параллельным улицам (дорогам) является одним из наиболее характерных приемов его орга­низации и воплощает одновременно несколько методических принци­пов, ра

Круговое движение на пересечениях
Развитием метода организации одностороннего движения на пере­гонах улиц и дорог применительно к перекресткам и городским пло­щадям является введение на них кругового движения. При этом глав­ным рез

Организация движения пешеходов
Общие задачи. Обеспечение удобства и безопасности движения пе­шеходов является одним из наиболее ответственных и вместе с тем до сих пор недостаточно разработанных разделов организации движения. Сл

Движение маршрутного пассажирского транспорта
Значение и специфика МПТ. Массовые перевозки пассажиров го­родским транспортом, их быстрота, безопасность и экономичность имеют решающее значение для удобства населения. Эффективность этих перевозо

Временные автомобильные стоянки
Потребность во временной стоянке автомобилей. Такая потребность имеется в городах и на автомобильных дорогах. Особенно она велика в административных центрах, зоне торговых, культурно-просветитель­н

Движение на площадях
Специфические задачи возникают перед организаторами дорожного движения на городских площадях, которые могут существенно отли­чаться друг от друга функциональным назначением и размерами. В гра­достр

Обеспечение информацией участников движения
Основным управляющим звеном в системе дорожного движения являются водители транспортных средств, конкретно определяющие направление и скорость транспортных средств в каждый момент дви­жения. Все ин

Движение в темное время суток
Статистика ДТП многих стран показывает, что в темное время су­ток резко повышается опасность движения. Несмотря на то, что ин­тенсивность движения в этот период в 5–10 раз ниже, чем в светлое время

Искусственное освещение улиц и дорог
Основным показателем качества освещения дороги является яр­кость покрытия в направлении наблюдателя, измеряемая в канделах на квадратный метр (кд/м2). Яркость покрытия определяется услов

Движение в зимних условиях
Дополнительные меры повышения безопасности движения. Зимний период характеризуется значительным сокращением светлого времени суток, понижением температуры воздуха и во многих районах сильны­ми снег

Движение в горной местности
Дороги, проложенные в горной местности, требуют особо тщатель­но разработанных мер организации движения, так как они характери­зуются значительно более низкими скоростями сообщения и вместе с тем в

Железнодорожные переезды
Под железнодорожным переездом подразумевают специально оборудованное пересечение в одном уровне железной и автомобильной дороги (улицы). Столкновения автомобилей с подвижным составом желез

Организация движения в местах ремонта дорог
Ремонтные работы на проезжей части улиц, дорог и на тротуарах могут вызвать серьезные нарушения движения и ДТП. Желательно, чтобы на время ремонта дорога полностью закрывалась для движения, иначе в

Организация движения при заторах транспортного потока
В условиях несоответствия развития УДС и численности парка транспортных средств усложняются условия движения, возникают за­торы на городских и внегородских магистралях. Впервые с заторами

ЗАКЛЮЧЕНИЕ
Как показывает мировой опыт, уровень автомобилизации будет воз­растать по мере роста экономического потенциала страны. Это значит, что будут усложняться все проблемы, связанные с автомобилизацией (

О Государственной инспекции безопасности дорожного движения Министерства внутренних дел Российской Федерации
1. Государственная инспекция безопасности дорожного движения Министерства внутренних дел Российской Федерации (далее именуется Государственная инспекция) осуществляет специальные контрольные, надзо

ОРГАНИЗАЦИЯ ДОРОЖНОГО ДВИЖЕНИЯ
Переплет художника С. Я. Орлова Технический редактор Я. Я. Горбачева Корректор Л. А. Гладких Компьютерная верстка Я. А. Мочаловой, С. И. Шаровой

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги