рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Расчеты на устойчивость. Порядок выполнения расчета на устойчивость.

Расчеты на устойчивость. Порядок выполнения расчета на устойчивость. - раздел Транспорт, Ульяновское высшее авиационное училище 1. Получение Сведений О Материале Стержня Для Определения Предельной Гибкости...

1. Получение сведений о материале стержня для определения предельной гибкости стержня расчетным путем или по таблице:

.

2. Получение сведений о геометрических размерах поперечного сечения, длине и способах закрепления концов для определения категории стержня в зависимости от гибкости:

,

где А – площадь сечения; Jmin – минимальный момент инерции (из осевых);

,

где m – коэффициент приведенной длины.

3. Выбор расчетных формул для определения критической силы и критического напряжения:

- при l < lпред расчет ведется по эмпирическим формулам;

- при l > lпред расчет ведется по формуле Эйлера.

4. Проверка и обеспечение устойчивости.

При расчете по формуле Эйлера условие устойчивости определяется по формуле

; ,

где F – действующая сжимающая сила; [ny] – допускаемый коэффициент запаса устойчивости.

При расчете по формуле Ясинского

sкр = а – bl,

где а, b – расчетные коэффициенты, зависящие от материала;

.

В случае невыполнения условий устойчивости необходимо увеличить площадь поперечного сечения.

Иногда необходимо определить запас устойчивости при заданном погружении:

.

При проверке устойчивости сравнивают расчетный запас выносливости с допускаемым:

ny £ [ny].

Тема 9. Динамические нагрузки

Как уже известно, статической называется нагрузка, которая весьма медленно возрастает от нуля до своего конечного значения. Ускорения частиц элементов конструкции от такой нагрузки невелики, а потому можно пренебречь возникающими при этом силами инерции. При быстро возрастающей нагрузке необходимо учитывать силы инерции, появляющиеся в результате деформации системы; силы инерции необходимо учитывать также при действии нагрузки, вызывающей движение тела с некоторым ускорением.

Нагрузки, учитывающие силы инерции, а также вызванные этими нагрузками напряжения и деформации называются динамическими. Все динамические нагрузки делятся на инерционные, ударные и повторно-переменные (цикловые). К динамическим также относятся ударные нагрузки, хотя при расчете на удар в ряде случаев пренебрегают силами инерции, возникающими в конструкции.

Удар – это взаимодействие тел, при котором за очень малый промежуток времени скачкообразно возникают конечные изменения скорости этих тел.

Расчет на действие динамической нагрузки (динамический расчет) производят при проектировании частей конструкций, находящихся под действием ударной или вибрационной нагрузки, создаваемой станками, двигателями, молотами и другими механизмами и вызывающей колебания сооружений. Многие части машин также находятся под действием динамической нагрузки.

Динамический расчет имеет целью обеспечить необходимую прочность конструкции и не допустить значительных ее деформаций.

При динамической нагрузке любой элемент конструкции в каждый момент времени можно рассматривать как находящийся в состоянии равновесия под действием внешних сил (включая опорные реакции), усилий, представляющих собой действие соседних элементов, и сил инерции. Это положение носит название принципа Даламбера. Таким образом, при инерционных нагрузках расчет ведется с применением принципа Даламбера.

При ударных нагрузках расчет ведется по коэффициенту динамичности, а при повторно-переменных нагрузках – по пределу выносливости материала.

Расчет на прочность с учетом сил инерции.Пусть стержень движется прямолинейно и параллельно своей оси (рис. 3.2.43). Применим принцип Даламбера, т.е. прикладываем к стержню силу инерции , после этого считаем, что стержень находится в состоянии статического равновесия. Находим продольную силу:

N = Р + ,

где Р1 – движущая сила, Н;

Р – сила сопротивления, Н;

– сила инерции.

,

где А – площадь поперечного сечения.

Расчет на прочность при ударе (рис. 3.2.44). Все расчеты на динамические нагрузки основаны на расчетах при статических нагрузках путем применения коэффициента динамичности:

, ,

где – динамический коэффициент;

– перемещение под действием силы Q.

Условие прочности: sд max = kдsст £ [s].

– динамический коэффициент при вертикальном ударе.

– коэффициент, учитывающий соотношение ударяемой (m) и ударяющей (М) массы.

Если ударяемая конструкция не имеет в точке удара сосредоточенной массы, то

.

На практике обычно принимают .

Тема 10. Усталость

Основные понятия. Многие детали машин работают в условиях переменных во времени напряжений. Так, вращающиеся валы и оси, нагруженные постоянными изгибающими силами, работают при переменных нормальных напряжениях изгиба.

Совокупность последовательных значений переменных напряжений за один период процесса их изменения называется циклом.

Обычно цикл представляют в виде графика, в котором по оси абсцисс откладывается время, а по оси ординат – напряжения (рис. 3.2.45).

Рис. 3.2.45

Цикл характеризуется максимальным, минимальным и средним напряжениями. Среднее значение напряжений (sm), амплитуда цикла (sа) и коэффициент асимметрии цикла (R) рассчитываются по формулам:

Все приведенные определения и соотношения можно записать и для касательных напряжений.

Цикл, при котором максимальное и минимальное напряжения равны по величине и обратны по знаку, называют симметричным циклом (рис. 3.2.46).

sт = 0; sa = sт; R = – 1.

Остальные циклы называют асимметричными. Часто встречается отнулевой, или пульсирующий, цикл, минимальное напряжение при этом цикле равно нулю, среднее напряжение равно амплитуде (рис. 3.2.47).

Переменные напряжения возникают в осях вагонов, рельсах, рессорах, валах машин, зубьях колес и многих других случаях.

Под действием переменных напряжений в материале возникает микротрещина, которая под действием повторяющихся напряжений растет в глубь изделия. Края трещины трутся друг о друга, и трещина быстро увеличивается. Поперечное сечение детали уменьшается, и в определенный момент случайный толчок, или удар вызывает разрушение.

Появление трещин под действием переменных напряжений называют усталостным разрушением.

Усталостью называют процесс накопления повреждений в материале под действием повторно-переменных напряжений.

Характерный вид усталостных разрушений – трещины и часть поверхности, блестящая в изломе. Такой характер излома вызван многократным нажатием, зашлифованностью частей детали.

Опыт показывает, что усталостное разрушение происходит при напряжениях ниже предела прочности, а часто и ниже предела текучести.

Способность материала противостоять усталостным разрушениям зависит от времени действия нагрузки и от цикла напряжений. При любой деформации нагружение с симметричным циклом наиболее опасно.

Опытным путем установлено, что существует максимальное напряжение, при котором материал выдерживает, не разрушаясь, значительное число циклов.

Наибольшее (максимальное) напряжение цикла, при котором не происходит усталостного разрушения образца из данного материала после любого большого числа циклов, называют пределом выносливости.

Для определения предела выносливости изготавливают серию одинаковых образцов и проводят испытания при симметричном цикле изгиба. Образцы имеют цилиндрическую форму, гладкую поверхность (полированную) и плавные переходы.

Образцы устанавливают на испытательную машину и нагружают так, чтобы напряжение составляло примерно 80 % от предела прочности. После некоторого числа циклов образец разрушается. Фиксируют максимальное напряжение и число циклов до разрушения.

Испытания повторяют, постепенно снижая нагрузку на каждый последующий образец и фиксируя число циклов до разрушения образцов.

По результатам испытаний строят график зависимости между максимальным напряжением и числом циклов нагружений до разрушения. График называют кривой усталости (рис. 3.2.48). В большинстве случаев после числа циклов нагружений более 107 кривая приближается к прямой, параллельной оси абсцисс.

Рис. 3.2.48

n – число циклов нагружения; sR – предел выносливости; s–1 – предел выносливости при симметричном цикле (R = – 1); s0 предел выносливости при отнулевом цикле (R = 0); nбаз – число циклов, при котором определяют предел выносливости (базовое число циклов)

Если провести испытания при асимметричном цикле, кривая ляжет выше, т. е. выносливость материала повысится.

Предел выносливости, определенный путем стандартных испытаний, является одной из механических характеристик материала.

Факторы, влияющие на сопротивление усталости:

1. Концентрация напряжений. В местах, где имеются резкие изменения размеров, отверстия, резьба, острые углы, возникают большие местные напряжения (концентрация напряжений). В этих местах возникают усталостные трещины, трещины разрастаются, и это приводит к разрушению детали.

Местные напряжения значительно выше номинальных напряжений, возникающих в гладких деталях.

Влияние концентрации напряжений учитывается эффективным коэффициентом концентрации напряжений (Кs). Коэффициент зависит от формы поверхности.

2. Размеры детали. В деталях больших размеров возможны внутренняя неоднородность, инородные включения, незаметные микротрещины. Влияние размеров учитывается масштабным фактором (Kd-).

Kd – масштабный коэффициент, коэффициент влияния абсолютных размеров.

3. Характер обработки поверхности. Поверхность может быть шероховатой, покрытой следами от резца, т.е. ослабленной, а может быть усиленной специальными методами упрочнения: азотированием, поверхностной закалкой, цементацией. При отсутствии специального упрочнения поверхностный коэффициент меняется от 0,6 до 1.

При специальной обработке он может быть больше единицы: поверхность оказывается прочнее сердцевины.

КF – коэффициент влияния шероховатости;

Ку – коэффициент влияния упрочнения, Ку = 1,1 – 2,8.

Одновременный учет действия всех факторов, понижающих предел выносливости, можно провести с помощью коэффициента

.

Находим предел выносливости в расчетном сечении:

.

Основы расчета на прочность при переменных напряжениях. Расчеты по нормальным и касательным напряжениям проводятся аналогично.

Расчетные коэффициенты выбираются по специальным таблицам.

При расчетах определяют запасы прочности по нормальным и касательным напряжениям.

Запас прочности по нормальным напряжениям находится по формуле

.

Запас прочности по касательным напряжениям определяется по формуле

,

где sа – амплитуда цикла нормальных напряжений;

tа – амплитуда цикла касательных напряжений.

Полученные запасы прочности сравнивают с допускаемыми. Представленный расчет является проверочным и проводится при конструировании детали.

– Конец работы –

Эта тема принадлежит разделу:

Ульяновское высшее авиационное училище

Федеральное государственное образовательное учреждение... Высшего профессионального образования... Ульяновское высшее авиационное училище...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Расчеты на устойчивость. Порядок выполнения расчета на устойчивость.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ульяновск 2009
ББК В2 я7 Л 39   Леденева, Н.Ф. Механика: учебно-метод. комплекс / Н.Ф. Леденева, В.С. Юганов. – Ульяновск : УВАУ ГА(и), 2009. – 394 с.   Соде

Методические материалы
1. Леденева, Н.Ф. Сборник задач по сопротивлению материалов : учеб.-метод. пособие / Н.Ф. Леденева, И.Н. Карпунина. – Ульяновск : УВАУ ГА, 2001. – -53 с. 2. Леденева, Н.Ф. Справочное пособ

Список основных обозначений
А – площадь поперечного сечения С – центр тяжести сечения Е – модуль упругости Jxy – центробежный момент инерции F

Тематический словарь терминов
Абсолютно твердое тело– тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало Абсолютно упругое тело

Методические указания по изучению дисциплины
Дисциплина «Механика» изучается курсантами УВАУ ГА(и) на завершающем этапе общетехнической подготовки; опирается на знания, полученные ими по дисциплинам естественно-научного цикла («Математика», «

Теоретическая механика
Статика Тема 1. Основные понятия и аксиомы статики Материальная точка– тело, размерами которого можно пренебречь. Она обладает массой и способностью взаимодей

Сложение сходящихся сил. Система сил, линии действия которых пересекаются в одной точке, называется системой сходящихся сил.
Сложить две или несколько сил – значит заменить эти силы одной силой, им эквивалентной, т.е. найти их равнодействующую (рис. 3.1.16). Из ∆ADC:

Скорости точек тела при плоскопараллельном движении
Теорема 1.Абсолютная скорость () любой точки плоской фигуры в каждый данный момент ра

Дифференциальные уравнения поступательного движения твердого тела.
, где

Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси.
, где Jz – момент инерции тела относительно оси вращения z

Возможные (виртуальные) перемещения системы
Возможные (виртуальные) перемещения системы (ds, dj) – любая совокупность бесконечно малых перемещений точек системы, допускаемых в данный момент наложенными на с

Сопротивление материалов
Тема 1. Центральное растяжение – сжатие Основные понятия, допущения и гипотезы. В статике изучаются абсолютно твердые тела, которые под действием внешних сил не изменяют р

Значения модуля упругости для некоторых материалов
Материал Коэффициент пропорциональности, МПа Чугун (1,5...1,6)×105 Сталь (1,96

Эпюры крутящих моментов.Для наглядного изображения распределения крутящих моментов вдоль оси бруса строят эпюры крутящих моментов.
Для определения крутящего момента в сечении используют метод сечений. Рассмотрим пример на рис. 3.2.16. Вращающий момент подводится к валу (брус круглого сечения) от шкива 1 и снимается с ва

Теория механизмов и машин
Тема 1. Основные понятия теории механизмов и машин Теория механизмов и машин – научная дисциплина, которая изучает строение (структуру), кинематику и динамику механизмов в связи с и

Динамика механизмов
1. Что понимается под динамической моделью механизма? 2. С какой целью производится привидение сил и моментов в механизме? 3. Напишите формулу кинетической энергии для кривошипно-

Рычажные механизмы
1. Каковы задачи кинематического анализа механизмов? 2. Как определить значение и направление угловых скоростей и ускорений звеньев механизма? 3. Сформулируйте задачи силового рас

Детали машин и основы конструирования
Тема 1. Общие сведения о деталях машин Основные понятия.Машины состоят из деталей. Детали машин– это составные части машин, каждая из которых изгот

Неразъемное соединение
Сварные соединения. Общие сведения о сварных соединениях. Сварка – технологический процесс получения неразъемного соединения металлических или неметаллических деталей

Разъемные соединения
Резьбовые соединения.Резьбовые соединения выполняют с помощью резьбовых крепежных деталей – болтов, винтов, шпилек, резьбовых муфт, стяжек и т. п. Основным элементом резьбового сое

Основные типы пружин
Пружины Растяжения Сжатия Кручения Изгиба Витые цилиндрические

Значение коэффициента режима работы в зависимости от машин и механизмов
Машины и механизмы Kp Конвейеры:   – ленточные; 1,25 – 1,50

От степени ответственности передач
Степень ответственности передачи Kб Поломка муфты вызывает остановку машины 1,0 Поломка му

Общие вопросы проектирования
1. Что называют деталью и сборочной единицей? 2. Назовите основные критерии работоспособности деталей. 3. Перечислите стадии конструирования машин. 4. Что дает автоматиза

Ременные передачи
1. Каково назначение ременных передач и их основные достоинства? 2. С какими эффектами связано упругое скольжение ремня в передаче? 3. Чем определяется передаточное отношение пере

Зубчатые передачи
1. Для каких целей используют зубчатые механизмы? 2. По каким признакам классифицируют зубчатые передачи? 3. Что называют передаточным числом зубчатой передачи и как определить пе

Цепные передачи
1. Каково назначение цепных передач и их преимущества перед ременными передачами? 2. Какие типы цепей используют в передачах? 3. Какие виды повреждений распространенны в передачах

Опоры валов и осей
1. Что представляет собой подшипник скольжения? 2. Какие типы подшипников (по виду трения и нагрузки) применяют в механизмах, машинах и приборах? 3. Как условия работы подшипника

Теоретическая механика
Практикум по теме «Система сходящихся сил» Задача 1. Ось одного из колес ша

Сопротивление материалов
Практикум по теме «Центральное растяжение – сжатие» Пример. Определите абсолютное и относительное удлинение, а также уменьшение поперечного сечения стальной тяги управ

Теория механизмов и машин
Практикум по теме «Структурный анализ и синтез механизмов» Пример 1.

Звенья механизма
№ Название Движение Особенности движения Стойка – –

Кинематические пары
Обозначение Звенья Название Класс А 0 – 1 вращательная (низшая)

Расчет заклепочных соединений
Пример 1. Определите потребное количество заклепок для передачи внешней нагрузки, равной 120 кН. Заклепки расположить в один ряд (рис. 4.4.1). Проверьте прочность соедин

Расчет резьбовых соединений
Пример 1.Грузоподъемная сила крана (см. рис. 4.4.4) равна G = 50 кН. О

Расчет сварных соединений
Пример 1. Рассчитайте сварное соединение для двух полос толщиной d = 8 мм, на которое действует растягивающая сила F = 320 кН (рис. 4.4.6). Материал полос – сталь

Механика
  Корректор Т.В. Никитина Компьютерная верстка Н.П. Яргункина

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги