рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Скорости точек тела при плоскопараллельном движении

Скорости точек тела при плоскопараллельном движении - раздел Транспорт, Ульяновское высшее авиационное училище Теорема 1.Абсолютная Скорость (...

Теорема 1.Абсолютная скорость () любой точки плоской фигуры в каждый данный момент равна геометрической сумме двух скоростей: скорости () произвольно выбранного полюса в поступательном движении плоской фигуры и вращательной скорости () во вращательном движении фигуры относительно полюса.

 

Положение любой точки В тела можно определить равенством (рис. 3.1.63)

.

Взяв производную от обеих частей уравнения по времени получим,

,

где – искомая скорость;

– скорость полюса;

– скорость точки В при вращательном движении тела вокруг полюса А при .

Таким образом

, (3.1.75)

, VBA = ω AB.

Теорема 2. Проекции скоростей двух точек плоской фигуры на ось, проходящую через эти точки, равны и имеют одинаковый знак (рис. 3.1.64). Зная, что , спроецируем данное выражение на прямую АВ, тогда

VВ cos β = VА cosα. (3.1.76)

Теорема 3.Плоская фигура в каждый момент времени имеет одну точку, абсолютная скорость которой равна нулю. Эта точка называется мгновенным центром скоростей (МЦС), обозначим ее буквой Р (рис. 3.1.65). Докажем существование МЦС.

Пусть скорость VА и ω заданы. Повернем полупрямую АI на 90° в сторону вращения плоской фигуры. Отложим отрезок АР = VA/ω, тогда точка Р и будет искомой:


VPA = АР·ω =,

|.

При движении плоской фигуры положение МЦС непрерывно меняется. Графически МЦС находится, как точка пересечения перпендикуляров, восстановленных из двух точек к направлениям их скоростей (рис. 3.1.66):

VA = PA·ω; ω = .

Скорости точек плоской фигуры пропорциональны расстояниям от них до мгновенного центра скоростей.

Если за полюс выбран МЦС, то скорость любой точки плоской фигуры есть вращательная скорость вокруг МЦС. Модуль скорости пропорционален расстоянию от точки до МЦС (рис. 3.1.67).

Зная для данного момента времени положение МЦС и скорость какой-либо точки В плоской фигуры, можно определить угловую скорость и скорость любой точки плоской фигуры (рис. 3.1.68).

Если известны скорость одной точки А по модулю и направлению и направление скорости другой точки В, то можно определить скорости всех точек плоской фигуры (рис. 3.1.69). Для этого необходимо найти положение МЦС, проведя перпендикуляры к векторам скоростей VA и VB, затем определить ω по формуле

w = ,

после чего найти скорости точек по формулам:

 
 

VB = PB×w, VC = PC ω.

Частные случаи определения положения МЦС. Известны направления скоростей двух точек. Рассмотрим этот случай на примере кривошипно-шатунного механизма (рис. 3.1.70). Направления скоростей точки А кривошипа и ползуна В известны. МЦС должен лежать в точке пересечения перпендикуляров к направлениям скоростей этих точек. Эта точка в бесконечности. Точка А принадлежит кривошипу и ее скорость VА = OAω, но точка А также принадлежит и шатуну АВ. Выберем точку А за полюс, тогда , спроецируем на прямую АВ:

VВ cos α = VА cos α; |VВ| = |VА|.

Спроецируем векторное равенство на перпендикуляр к АВ:

VВ sin α = VА sin α + VВА Þ VВА = 0,

VВА = AB·ωАВ Þ ωАВ = 0.

Шатун АВ совершает мгновенно-поступательное движение.

Следовательно, если угловая скорость плоской фигуры равна нулю, то МЦС удален в бесконечность и тело совершает мгновенно-поступательное движение. Скорости всех точек плоской фигуры равны по величине и направлению.

Если скорости двух точек плоской фигуры параллельны между собой и перпендикулярны линии, соединяющей эти точки, то МЦС можно найти из условия пропорциональности скоростей точек расстояниям от этих точек до МЦС (рис. 3.1.71).

Рис. 3.1.71

При качении без скольжения одного тела по поверхности другого неподвижного тела МЦС совпадает с точкой соприкосновения тел, так как при отсутствии скольжения скорость точки соприкосновения равна нулю (рис. 3.1.72).

Рис. 3.1.72

Определение ускорений точек тела. Абсолютное ускорение любой точки В плоской фигуры равно геометрической сумме ускорения полюса А и ускорения точки В во вращательном движении фигуры вокруг полюса (рис. 3.1.73):

. (3.1.77)

 

Движение плоской фигуры задано:

XА = f1(t); YA = f2(t); φ = f3(t);

VA = , , .

Ускорение точки В во вращательном движении вокруг полюса найдем по формулам (3.1.71) и (3.1.72):

= tg α =

или

= BA·ω2 и = ВА·ε.

Вектор всегда направлен от точки В к полюсу А, вектор направлен перпендикулярно ВА в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное.

Тогда вместо равенства (3.1.77) получим

. (3.1.78)

Пример.Центр колеса, катящегося по прямой, имеет в данный момент скорость V0 = 1 м/с и ускорение = 2 м/с2 . Радиус колеса (R) равен 0,2 м. Определите ускорение точки В – конца перпендикулярного ОР диаметра АВ и ускорение точки Р, совпадающей с мгновенным центром скоростей (рис. 3.1.74).

Решение. V0 и известны, поэтому принимаем точку О за полюс. Определяем ω. Точка касания Р является мгновенным центром скоростей, следовательно,

ω =

Так как величина РO = R остается постоянной при любом положении колеса, то, найдя производную от ω, получим

ε =

Знаки ω и ε совпадают, следовательно, вращение колеса ускоренное. Следует помнить, что ε определяется таким образом только в том случае, когда РO – величина постоянная.

Определяем и . Так как за полюс взята точка О, то

.

= BО·ε; = = 2 м/с2, = ВО·ω2 = = 5 м/с2.

Изобразим все ускорения, приложенные в точке В (рис. 3.1.75).

Проведя оси Вх и Вy, находим м/с2, м/с2, откуда м/с2.

Аналогично находится и ускорение точки Р (рис. 3.1.76):

, Р0·ε = =2 м/с2, 5 м/с2.

Ускорение точки Р, скорость которой в данный момент равна нулю, нулю не равно.

Тема 10. Сферическое движение твердого тела

Сферическое движение – движение твердого тела, одна из точек которого во все время движения остается неподвижной (например, движение волчка). Точки тела движутся по сферическим поверхностям. Положение тела определяют при помощи трех углов (рис. 3.1.77). Для этого задаются две системы координат: неподвижная Оxyz и подвижная ОxhV, связанная с твердым телом. Линия ОJ – линия узлов, задаются углы: Y – угол прецессии, q – угол нутации, j – угол собственного вращения – углы Эйлера. Таким образом, уравнения сферического движения выглядят следующим образом: Y = f1(t); q = f2(t); j = f3(t). Углы отсчитываются от осей против хода часовой стрелки.

Теорема Эйлера-Даламбера: всякое перемещение тела, имеющего неподвижную точку, можно заменить одним поворотом вокруг некоторой мгновенной оси вращения, проходящей через эту точку (рис. 3.1.78). Скорости всех точек тела, лежащих на мгновенной оси вращения в данный момент времени равны нулю.

Вектор угловой скорости (мгновенной угловой скорости) откладывается от неподвижной точки по мгновенной оси вращения 1 в такую сторону, чтобы, смотря навстречу этому вектору, видеть вращение происходящим против часовой стрелки. Вектор угловой скорости со временем изменяется не только по численной величине, но и по направлению. Конец вектора описывает годограф 2 скорости вектора . Угловое ускорение определяется по формуле

.

Скорость конца вектора , совпадает по направлению с касательной к годографу вектора угловой скорости. В случае сферического движения в отличие от случая вращения вокруг неподвижной оси вектор не совпадает с направлением .

Скорости точек при сферическом движении определяются по формуле

,

где – радиус-вектор точки, проведенный из неподвижной точки.

Модуль скорости находится по формуле

v = wr×sina; v = w×h,

где h – расстояние от точки до мгновенной оси вращения.

Формула Эйлера:

.

Ускорения (рис. 3.1.79):

- полное ускорения: ;

- вращательного ускорения: .

Модуль вращательного ускорения: авр = e×r×sinb; авр = e×h1, где h1 – расстояние от точки до вектора , направлено перпендикулярно плоскости, проходящей через точку М и вектор ;

- осестремительного ускорения: .

Модуль осестремительного ускорения:

аос= w2×h,

где h – направлено к оси вращения.

Движение свободного твердого тела (общий случай движения). Свободное твердое тело имеет шесть степеней свободы. При рассмотрении движения свободного твердого тела, кроме неподвижной системы координат Oxyz, вводится подвижная система координат Ax1y1z1, которая связана с телом в точке А. Тогда движение свободного твердого тела представляет собой сложное движение, которое можно рассматривать как состоящее из поступательного движения вместе с полюсом (А) и сферическое движение вокруг полюса.

Уравнения движения свободного твердого тела:

xA = f1(t); yA = f2(t); zA = f3(t); Y = f4(t); q = f5(t); j = f6(t).

Первые три уравнения определяют поступательную часть движения и зависят от выбора полюса, остальные три определяют сферическое движение вокруг полюса и от выбора полюса не зависят.

Скорость любой точки (М) свободного твердого тела равна геометрической сумме скорости полюса (А) и скорости этой точки в ее сферическом движении вокруг полюса (рис. 3.1.80):

.

Ускорение точки свободного твердого тела равно геометрической сумме ускорения полюса, осестремительного ускорения точки и ее вращательного ускорения, определенных относительно мгновенной оси и оси углового ускорения, проходящих через полюс:

.

Два последних члена дают ускорение точки в ее движении вокруг полюса.

Тема 11. Сложное движение точки

Относительное, переносное и абсолютное движения. Сложное движение точки это такое движение, при котором точка одновременно участвует в двух или нескольких движениях. При определении движения ВС относительно земли приходится учитывать и движение воздушного потока, в котором оно перемещается.

Рассмотрим сложное движение точки М, перемещающейся по отношению к подвижной системе отсчета O1x1y1z1, которая, в свою очередь, как-то движется относительно другой системы отсчета Oxyz, условно считаемой неподвижной (рис. 3.1.81).

Движение точки М относительно подвижной системы отсчета O1x1y1z1 называют относительным движением точки. Скорость и ускорение точки в относительном движении называютотносительной скоростью () и относительным ускорением. Движение подвижной системы отсчета и неизменно связанного с ней тела по отношению к неподвижной системе отсчета Oxyz, называется переносным движением.

Переносной скоростью () ипереносным ускорением () точки называется абсолютная скорость и ускорение той неизменно связанной с подвижными осями точки, с которой в данный момент совпадает точка М.

Движение точки М относительно неподвижной системы отсчета Oxyz называется абсолютным или сложным движением. Скорость и ускорение точки в абсолютном движении называют абсолютной скоростью() и абсолютным ускорением ().

Теорема о сложении скоростей. Для установления связи между скоростями точки в двух системах отсчета воспользуемся следующими векторными равенствами (см. рис. 3.1.81):

; (3.1.79)

; (3.1.80)

, (3.1.81)

Поскольку при определении относительной скорости можно «забыть» о переносном движении, т.е. считать оси о1х1у1z1 неподвижными, продифференцировав равенство (3.1.80) в этом предположении, найдем

. (3.1.82)

Таким образом, относительная скорость точки в сложном движении определяется обычными методами кинематики точки для неподвижных систем координат.

При определении переносной скорости исключаем относительное движение, т.е. полагаем || = const. Продифференцировав векторное равенство (3.1.80) в этом предположении, найдем

.

Учитывая, что = – скорость начала подвижной системы координат, а , где ωе – угловая скорость переносного движения системы, окончательно получаем

. (3.1.83)

Формула (3.1.83) определяет вектор переносной скорости точки в общем случае свободного переносного движения. В частных случаях переносного движения формула (3.1.83) упрощается, например, при поступательном переносном движении ωe = 0, а при вращательном переносном = 0.

Абсолютную скорость точки найдем, продифференцировав по времени векторное равенство (3.1.81):

.

Учитывая, что а также равенства (3.1.82) и (3.1.83), получаем

. (3.1.84)

Формула (3.1.84) представляет собой математическую запись теоремы о сложении скоростей в сложном движении: абсолютная скорость точки равна геометрической сумме ее переносной и относительной скоростей.

Модуль определяем по теореме косинусов:

. (3.1.85)

Следует отметить, что в самолетовождении теорема о сложении скоростей применяется в следующей интерпретации: путевая скорость самолета равна геометрической сумме скорости воздуха и воздушной скорости самолета :

. (3.1.86)

Теорема о сложении ускорений. Абсолютное ускорение, характеризующее изменение абсолютной скорости в абсолютном движении, найдем, продифференцировав по времени векторное равенство (3.1.84):

.

1 группа – производные только от векторов ;

2 группа – производные только от относительных координат;

3 группа – производные от векторов и относительных координат.

Каждая из групп соответствует некоторому ускорению. Переносное ускорение – вычисляется, как если бы точка М покоилась по отношению подвижной системы осей (x1, y1, z1 = const) и перемещалась вместе с ними по отношению к неподвижной системе; – вычисляется, как если бы координаты x1, y1, z1 менялись, а векторы были постоянны.

Последнее слагаемое называют поворотным ускорением, или ускорением Кориолиса – по имени французского ученого Г. Кориолиса (1792 – 1843) Поворотное ускорение определяется по формуле

.

Используя формулы Пуассона, получаем

; ; ,

тогда

;

. (3.1.87)

Формула абсолютного ускорения точки в сложном движении принимает следующий вид:

. (3.1.88)

Абсолютное ускорение точки в сложном движении равно геометрической сумме ее переносного, относительного и поворотного ускорений.

Модуль и направление ускорения Кориолиса. Поворотное ускорение характеризует одновременно и изменение вектора переносной скорости в относительном движении, и изменение вектора относительной скорости в переносном движении (рис. 3.1.82).

Модуль поворотного ускорения, как это следует из определения векторного произведения,

. (3.1.89)

Поворотное ускорение может быть равно нулю в трех случаях: или , или Vr = 0, или относительная скорость параллельна оси переносного вращения (например, точка перемещается по образующей цилиндра, вращающегося вокруг оси своей симметрии).


Для определения направления поворотного ускорения используется или обычное правило векторного произведения, или правило Н.Е. Жуковского. Рассмотрим оба этих правила. Как известно, вектор векторного произведения 2() перпендикулярен плоскости перемножаемых векторов и направлен в ту сторону, откуда поворот первого вектора в произведении ко второму на наименьший угол виден против движения часовой стрелки (рис. 3.1.83, а).

Согласно правилу Н.Е. Жуковского (рис. 3.1.83, б), чтобы найти направление поворотного ускорения, нужно спроецировать относительную скорость точки на плоскость, перпендикулярную оси переносного вращения , и повернуть эту проекцию в той же плоскости на 90° в сторону переносного вращения (см. рис. 3.1.83, б).

Пример.Самолет, пролетающий над пунктами А и B (рис. 3.1.84), имеет воздушную скорость , равную по модулю 550 км/ч; вектор скорости ветра составляет с направлением AB угол γ = 150° (угол ветра). Найдите угол сноса (α) и время перелета, если скорость ветра равна 20 м/с и расстояние AB составляет 800 км.

 
 

Решение. В треугольнике скоростей (рис. 3.1.84, б) – скорость самолета относительно воздуха, – скорость ветра и – абсолютная (путевая скорость), направление которой совпадает с AB.

По теореме синусов

,

откуда

.

Подставив в уравнение значение скорости ветра

20·3,6 = 72 км/ч,

получим

α = 3°45′.

Найдем третий угол треугольника:

β = 180° – 150° – 3°45′ = 26°15′.

Тогда

Vа = 486 км/ч.

Время перелета

t = ; t = 1 ч 39 мин.

– Конец работы –

Эта тема принадлежит разделу:

Ульяновское высшее авиационное училище

Федеральное государственное образовательное учреждение... Высшего профессионального образования... Ульяновское высшее авиационное училище...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Скорости точек тела при плоскопараллельном движении

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ульяновск 2009
ББК В2 я7 Л 39   Леденева, Н.Ф. Механика: учебно-метод. комплекс / Н.Ф. Леденева, В.С. Юганов. – Ульяновск : УВАУ ГА(и), 2009. – 394 с.   Соде

Методические материалы
1. Леденева, Н.Ф. Сборник задач по сопротивлению материалов : учеб.-метод. пособие / Н.Ф. Леденева, И.Н. Карпунина. – Ульяновск : УВАУ ГА, 2001. – -53 с. 2. Леденева, Н.Ф. Справочное пособ

Список основных обозначений
А – площадь поперечного сечения С – центр тяжести сечения Е – модуль упругости Jxy – центробежный момент инерции F

Тематический словарь терминов
Абсолютно твердое тело– тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало Абсолютно упругое тело

Методические указания по изучению дисциплины
Дисциплина «Механика» изучается курсантами УВАУ ГА(и) на завершающем этапе общетехнической подготовки; опирается на знания, полученные ими по дисциплинам естественно-научного цикла («Математика», «

Теоретическая механика
Статика Тема 1. Основные понятия и аксиомы статики Материальная точка– тело, размерами которого можно пренебречь. Она обладает массой и способностью взаимодей

Сложение сходящихся сил. Система сил, линии действия которых пересекаются в одной точке, называется системой сходящихся сил.
Сложить две или несколько сил – значит заменить эти силы одной силой, им эквивалентной, т.е. найти их равнодействующую (рис. 3.1.16). Из ∆ADC:

Дифференциальные уравнения поступательного движения твердого тела.
, где

Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси.
, где Jz – момент инерции тела относительно оси вращения z

Возможные (виртуальные) перемещения системы
Возможные (виртуальные) перемещения системы (ds, dj) – любая совокупность бесконечно малых перемещений точек системы, допускаемых в данный момент наложенными на с

Сопротивление материалов
Тема 1. Центральное растяжение – сжатие Основные понятия, допущения и гипотезы. В статике изучаются абсолютно твердые тела, которые под действием внешних сил не изменяют р

Значения модуля упругости для некоторых материалов
Материал Коэффициент пропорциональности, МПа Чугун (1,5...1,6)×105 Сталь (1,96

Эпюры крутящих моментов.Для наглядного изображения распределения крутящих моментов вдоль оси бруса строят эпюры крутящих моментов.
Для определения крутящего момента в сечении используют метод сечений. Рассмотрим пример на рис. 3.2.16. Вращающий момент подводится к валу (брус круглого сечения) от шкива 1 и снимается с ва

Расчеты на устойчивость. Порядок выполнения расчета на устойчивость.
1. Получение сведений о материале стержня для определения предельной гибкости стержня расчетным путем или по таблице:

Теория механизмов и машин
Тема 1. Основные понятия теории механизмов и машин Теория механизмов и машин – научная дисциплина, которая изучает строение (структуру), кинематику и динамику механизмов в связи с и

Динамика механизмов
1. Что понимается под динамической моделью механизма? 2. С какой целью производится привидение сил и моментов в механизме? 3. Напишите формулу кинетической энергии для кривошипно-

Рычажные механизмы
1. Каковы задачи кинематического анализа механизмов? 2. Как определить значение и направление угловых скоростей и ускорений звеньев механизма? 3. Сформулируйте задачи силового рас

Детали машин и основы конструирования
Тема 1. Общие сведения о деталях машин Основные понятия.Машины состоят из деталей. Детали машин– это составные части машин, каждая из которых изгот

Неразъемное соединение
Сварные соединения. Общие сведения о сварных соединениях. Сварка – технологический процесс получения неразъемного соединения металлических или неметаллических деталей

Разъемные соединения
Резьбовые соединения.Резьбовые соединения выполняют с помощью резьбовых крепежных деталей – болтов, винтов, шпилек, резьбовых муфт, стяжек и т. п. Основным элементом резьбового сое

Основные типы пружин
Пружины Растяжения Сжатия Кручения Изгиба Витые цилиндрические

Значение коэффициента режима работы в зависимости от машин и механизмов
Машины и механизмы Kp Конвейеры:   – ленточные; 1,25 – 1,50

От степени ответственности передач
Степень ответственности передачи Kб Поломка муфты вызывает остановку машины 1,0 Поломка му

Общие вопросы проектирования
1. Что называют деталью и сборочной единицей? 2. Назовите основные критерии работоспособности деталей. 3. Перечислите стадии конструирования машин. 4. Что дает автоматиза

Ременные передачи
1. Каково назначение ременных передач и их основные достоинства? 2. С какими эффектами связано упругое скольжение ремня в передаче? 3. Чем определяется передаточное отношение пере

Зубчатые передачи
1. Для каких целей используют зубчатые механизмы? 2. По каким признакам классифицируют зубчатые передачи? 3. Что называют передаточным числом зубчатой передачи и как определить пе

Цепные передачи
1. Каково назначение цепных передач и их преимущества перед ременными передачами? 2. Какие типы цепей используют в передачах? 3. Какие виды повреждений распространенны в передачах

Опоры валов и осей
1. Что представляет собой подшипник скольжения? 2. Какие типы подшипников (по виду трения и нагрузки) применяют в механизмах, машинах и приборах? 3. Как условия работы подшипника

Теоретическая механика
Практикум по теме «Система сходящихся сил» Задача 1. Ось одного из колес ша

Сопротивление материалов
Практикум по теме «Центральное растяжение – сжатие» Пример. Определите абсолютное и относительное удлинение, а также уменьшение поперечного сечения стальной тяги управ

Теория механизмов и машин
Практикум по теме «Структурный анализ и синтез механизмов» Пример 1.

Звенья механизма
№ Название Движение Особенности движения Стойка – –

Кинематические пары
Обозначение Звенья Название Класс А 0 – 1 вращательная (низшая)

Расчет заклепочных соединений
Пример 1. Определите потребное количество заклепок для передачи внешней нагрузки, равной 120 кН. Заклепки расположить в один ряд (рис. 4.4.1). Проверьте прочность соедин

Расчет резьбовых соединений
Пример 1.Грузоподъемная сила крана (см. рис. 4.4.4) равна G = 50 кН. О

Расчет сварных соединений
Пример 1. Рассчитайте сварное соединение для двух полос толщиной d = 8 мм, на которое действует растягивающая сила F = 320 кН (рис. 4.4.6). Материал полос – сталь

Механика
  Корректор Т.В. Никитина Компьютерная верстка Н.П. Яргункина

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги