рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Автоматизированный априорный анализ статистической совокупности в среде MS Excel - Лабораторная Работа, раздел Транспорт,   О Т Ч Е Т О Р...

 

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы

 

Автоматизированный априорный анализ статистической совокупности в среде MS Excel

 

Вариант № ____

 

 

Выполнил: ст. III курса гр.________________

______________________

ФИО

Проверил:_________________________

ФИО

 

 

Москва ………..г.


Постановка задачи

В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия… Для автоматизации статистических расчетов используются средства электронных… Выборочные данные представлены на Листе 1 Рабочего файла в табл.1 (ячейки B4:C35):

Задача 1.

Количество аномальных единиц наблюдения (табл.2) равно ............., номера предприятий… Задача 2. Рассчитанные выборочные показатели представлены в двух таблицах —… При этом следует учитывать следующие особенности инструмента Описательная статистикатабличного процессора Excel.

Стандартное отклонение,

Дисперсия выборки,

Эксцесс,

Асимметричность

Таблица 8 Описательные статистики выборочной совокупности Обобщающие…

Задача 3.

0%<Vs40% - колеблемость незначительная; 40%< Vs60% - колеблемость средняя (умеренная); Vs>60% - колеблемость значительная.

Таблица 9

Распределение значений признака по диапазонам рассеяния признака относительно

  Границы диапазонов, млн. руб. Количество значений xi, находящихся в диапазоне Процентное соотношение рассеяния значений xi по диапазонам, %
  Первый признак Второй признак Первый признак Второй признак Первый признак Второй признак
А
[………….;………….] [………….;……….]        
[………….;………….] [………….;……….]        
[………….;………….] [………….;……….]        

На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:

68,3% значений располагаются в диапазоне (),

95,4% значений располагаются в диапазоне (),

99,7% значений располагаются в диапазоне ().

Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.

Расхождение с правилом «трех сигм»может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон () или значительно более 5% значения хi выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному.

Вывод:

Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно (нельзя) считать близким к нормальному.

Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно (нельзя) считать близким к нормальному.

Задача 4. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.

Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации Vs признаков.

Вывод:

Так как Vsдля первого признака больше (меньше), чем Vs для второго признака, то колеблемость значений первого признака больше (меньше) колеблемости значений второго признака, совокупность более однородна по первому (второму) признаку, среднее значение первого признака является более (менее) надежным, чем у второго признака.

Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.

Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ().

1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.

Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.

2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo, Me) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.

Нормальное распределение является симметричным, и для него выполняются соотношения:

=Mo=Me

Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.

3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хminи хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне (). Следовательно, по проценту выхода значений признака за пределы диапазона () можно судить о соответствии длины «хвостов» распределения нормальному закону.

Вывод:

1.Гистограмма является одновершинной (многовершинной).

2. Распределение приблизительно симметрично (существенно асимметрично), так как параметры , Mo, Me отличаются незначительно (значительно):

= .............., Mo=.............., Me=..............

3. “Хвосты” распределения не очень длинны (являются длинными), т.к. согласно графе 5 табл.9…..……% вариантов лежат за пределами интервала ()=(………………;…………….) млн. руб.

Следовательно, на основании п.п. 1,2,3, можно (нельзя) сделать заключение о близости изучаемого распределения к нормальному.

II. Статистический анализ генеральной совокупности

Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.

Таблица 10

Описательные статистики генеральной совокупности

Обобщающие статистические показатели совокупности по изучаемым признакам Признаки
Среднегодовая стоимость основных производственных фондов Выпуск продукции
Стандартное отклонение , млн. руб.    
Дисперсия    
Асимметричность As    
Эксцесс Ek    

Для нормального распределения справедливо равенство

RN=6sN.

В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.

Ожидаемый размах вариации признаков RN:

- для первого признака RN=………...............,

- для второго признака RN =………...............

Соотношениемежду генеральной и выборочной дисперсиями:

- для первого признака ……,т.е. расхождение между дисперсиями незначительное (значительное);

ля второго признака ……,т.е. расхождение между дисперсиями незначительное (значительное).

Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.

Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки(ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность

= |-|

определяет ошибку репрезентативности для средней величины признака.

Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки.

1. Для среднего значения признака средняя ошибка выборки (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение sвыборочной средней от математического ожидания M[] генеральной средней .

Для изучаемых признаков средние ошибки выборки даны в табл. 3:

- для признака Среднегодовая стоимость основных производственных фондов

=……………….,

- для признака Выпуск продукции

=………………..

2. Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.

Для уровней надежности P=0,954; P=0,683оценки предельных ошибок выборки даны в табл. 3 и табл. 4.

Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:

,

Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.

Таблица 11

Предельные ошибки выборки и ожидаемые границы для генеральных средних

Доверительная вероятность Р Коэффи-циент доверия t Предельные ошибки выборки, млн. руб. Ожидаемые границы для средних , млн. руб.
для первого признака для второго признака для первого признака для второго признака
0,683    
0,954    

Вывод:

Увеличение уровня надежности ведет к расширению (сужению) ожидаемых границ для генеральных средних.

Задача 3.Рассчитанныев табл.3значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.

1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.

Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство >Me>Mo,что означает преимущественное появление в распределении более высоких значений признака (среднее значение больше серединного Me и модальногоMo).

Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство <Me<Mo,означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного Me и модальногоMo).

Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:

|As| 0,25 - асимметрия незначительная;

0,25<|As|0,5 - асимметрия заметная (умеренная);

|As|>0,5 - асимметрия существенная.

Вывод:

Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная (заметная, существенная)левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают …………………………………………………………………………………………

Для признака Выпуск продукции наблюдается незначительная (заметная, существенная)левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ……………………………………………………….

…………………………………………………………………………………………

2.Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.

Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.

Если Ek>0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.

Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а рассеяны по всему диапазону от xmaxдо xmin.

Для нормального распределения Ek=0. Чем больше абсолютная величина |Ek|, тем существеннее распределение отличается от нормального.

При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения.

Вывод:

1.Так как для признака Среднегодовая стоимость основных производственных фондов Ek>0(Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|…........|) Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения.

2.Так как для признака Выпуск продукции Ek>0(Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|….........|) .Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения.

III. Экономическая интерпретация результатов статистического исследования предприятий[2]

1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?

Предприятия с резко выделяющимися значениями показателей приведены в табл.2. После их исключения из выборки оставшиеся 30 предприятий являются типичными (нетипичными) по значениям изучаемых экономических показателей.

2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных производственных фондов и выпуска продукции?

Ответ на вопрос следует из анализа данных табл.9, где приведен диапазон значений признака (), содержащий наиболее характерные для предприятий значения показателей.

Для среднегодовой стоимости основных производственных фондов наиболее характерные значения данного показателя находятся в пределах от ...............………млн. руб. до ................…….млн. руб. и составляют ..........% от численности совокупности.

Для выпуска продукции наиболее характерные значения данного показа-теля находятся в пределах от ...............……. млн. руб. до …..................млн. руб. и составляют ...........% от численности совокупности.

3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?

Ответы на вопросы следуют из значения коэффициента вариации (табл.8), характеризующего степень однородности совокупности (см. вывод к задаче 3б). Максимальное расхождение в значениях показателей определяется размахом вариации Rn. (табл.8).

Для среднегодовой стоимости основных производственных фондов различия в значениях показателя значительны (незначительны). Максимальное расхождение в значениях данного показателя........................млн. руб.

Для выпуска продукции различия в значениях показателя значительны (незначительны). Максимальное расхождение в значениях данного показателя........................млн. руб.

4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных производственных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?

Структура предприятий представлена в табл.7 Рабочего файла.

Предприятия с наиболее типичными значениями показателя входят в интервал от .....................млн. руб. до ........................млн. руб. Их удельный вес ...........%. Это предприятия №№ ................................................................................

Предприятия с наибольшими значениями показателя входят в интервал от .....................млн. руб. до .......................млн. руб. Их удельный вес ...........%. Это предприятия №№ ................................................... ...................................................

Предприятия с наименьшими значениями показателя входят в интервал от .....................млн. руб. до ........................млн. руб. Их удельный вес ...........%. Это предприятия №№ ..............................................................................................

5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?

Ответ на вопрос следует из вывода к задаче 5 и значения коэффициента асимметрии (табл.8).

Распределение предприятий на группы по среднегодовой стоимости основных производственных фондов носит закономерный характер, близкий к нормальному (незакономерный характер). В совокупности преобладают предприятия с более высокой (низкой) стоимостью основных фондов.

6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать?

Ответ на первый вопрос следует из данных табл.11. Максимальное расхождение в значениях показателя определяется величиной размаха вариации RN.

По корпорации в целом ожидаемые с вероятностью 0,954 средние величины показателей находятся в интервалах:

для среднегодовой стоимости основных производственных фондов - от .........................млн. руб. до .........................млн. руб.;

для выпуска продукции - от ......................млн. руб. до ......................млн. руб.;

Максимальные расхождения в значениях показателей:

для среднегодовой стоимости основных производственных фондов -......................млн. руб.;

для выпуска продукции - .......................млн. руб.

 

 


ПРИЛОЖЕНИЕ

Результативные таблицы и графики

Распечатка Рабочего файла(Лист 1)


 

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы

 

Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

 

 

Вариант № ____

 

Выполнил: ст. III курса гр.________________

______________________

ФИО

Проверил:_________________________

ФИО

 

Москва ………..г.


Постановка задачи статистического исследования

В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным…

Таблица исходных данных

В процессе статистического исследования необходимо решить ряд задач.

1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

2. Установить наличие корреляционной связи между признаками Х и Yметодом аналитической группировки.

3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η.

4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройкиПакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.

5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:

а) значимость и доверительные интервалы коэффициентов а0, а1;

б) индекс детерминации R2и его значимость;

в) точность регрессионной модели.

6. Дать экономическую интерпретацию:

а) коэффициента регрессии а1;

б) коэффициента эластичности КЭ;

в) остаточных величин εi.

7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.


2. Выводы по результатам выполнения лабораторной работы[3]

Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Yграфическим методом.

Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.

Вывод:

Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет (не имеет) место статистическая связь. Предположительный вид связи – линейная (нелинейная) прямая (обратная).

Задача 2.Установление наличия корреляционной связи между признаками Х и Yметодом аналитической группировки.

Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y(усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.

Вывод:

Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Хзакономерно (незакономерно) увеличиваются (уменьшаются) средние групповые значения результативного признака . Следовательно, между признакамиХи Y………………………………................. ...

……....................................................................................................................................

Задача 3.Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой

,

где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).

Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:

Значениеη 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Сила связи Слабая Умеренная Заметная Тесная Весьма тесная

Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.

Вывод:

Значение коэффициента η =……………………, что в соответствии с оценочной шкалой Чэддока говорит о …………………………степени связи изучаемых признаков.

Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессиянадстройки Пакет анализаи оценка тесноты связи на основе линейного коэффициента корреляции r.

В результате работы инструмента Регрессия Excel формирует следующий набор таблиц.

1. Таблица Регрессионная статистика – содержит линейный коэффициент корреляции r, индекс детерминации R2, остаточное стандартное отклонение σε, количество наблюдений n:

Регрессионная статистика  
  Множественный R   = r
  R-квадрат   = R2
  Нормированный R-квадрат    
  Стандартная ошибка   =σε
  Наблюдения   =n
         

2. ТаблицаДисперсионный анализ – содержит значения факторной и остаточной дисперсий (графа MS), расчетное значение F-критерия Фишера (графа F), значение уровня значимости (графа Значимость F) и другие параметры дисперсионного анализа:

Дисперсионный анализ
df SS MS F Значимость F
Регрессия          
Остаток          
Итого          

3. Результативная таблица – содержит значения параметров а0 и а1 уравнения регрессии и их статистические оценки, включая границы доверительных интервалов для коэффициентов уравнения регрессии:

Коэффи-циенты Стандартная ошибка t-стати-стика P-Значение Нижние 95% Верхние 95% Нижние 68,3% Верхние 68,3%
Y-пересечение                
Переменная X 1                

Между терминологией инструмента Регрессия и терминами, принятыми в отечественной статистике, имеется ряд расхождений. Согласование терминологии приводится в нижеследующей таблице.

Статистическая интерпретация параметров инструмента Регрессия

Параметр инструментаРегрессия Статистический показатель Обозначение
Множественный R Линейный коэффициент корреляции r
R–квадрат Индекс детерминации R2
Стандартная ошибка Среднее квадратическое отклонение расчетных значений от фактических σε
Наблюдения Число наблюдений n
MS Дисперсия факторная и остаточная -
Y–пересечение Свободный член регрессии а0
Переменная X 1 Коэффициент регрессии а1
Коэффициенты Значение коэффициентов уравнения регрессии аi
Нижние 95% и Верхние 95% Соответственно нижние и верхние границы доверительных интервалов для коэффициентов регрессии а0 и а1, рассчитанные для уровня надежности Р=0,95.
Нижние 68,3% и Верхние 68,3% Соответственно нижние и верхние границы доверительных интервалов для коэффициентов регрессии а0 и а1, рассчитанные для уровня надежности Р=0,683.
ПредсказанноеY Расчетные значения результативного признака
Остатки Отклонения расчетных значений от фактических εi

 

4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком Xи результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0иа1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения …………………….

4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").

Вывод:

Значение коэффициента корреляции r =…………… , что в соответствии с оценочной шкалой Чэддока говорит о ..….………………………. степени связи изучаемых признаков.

Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков XиY выполняется в 4 этапа:

1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;

2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;

3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;

4) оценка погрешности регрессионной модели.

5.1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов

Так как коэффициенты уравненияа0 , а1рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:

1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);

2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;

– доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1. Определение значимости коэффициентов уравнения

Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95.Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05.Этот уровень значимости считается заданным.

В инструменте Регрессиянадстройки Пакет анализа для каждого из коэффициентова0иа1 вычисляется уровень его значимости αр,который указан в результативной таблице (табл.2.7термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр,меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечания!!!

1 В результативных таблицах инструментаРегрессия уровень значимости коэффициентов уравнения может быть выражен в компьютерном формате mE-p, где m–мантисса, Е– основание системы счисления, p – порядок. Такая запись означает число m*10-p.Например, 1,28Е-09 преобразуется в число 1,28*10-9.

2. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0.В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1,то взаимосвязь между признаками X иY в принципе не может аппроксимироваться линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =…..………… Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а0 признается типичным (случайным).

Для коэффициента регрессии а1рассчитанный уровень значимости есть αр =………..…… Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а1 признается типичным (случайным).

5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

 

Таблица 2.9

Границы доверительных интервалов коэффициентов уравнения

В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах…………….а0….……….., значение…

Определение практической пригодности построенной регрессионной модели.

· близость к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ; · близость к нулю означает, что связь между фактическими данными Х и Y нельзя… Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса…

Общая оценка адекватности регрессионной модели по F-критерию Фишера

Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 (термин "Значимость F") в ячейке F86.Оценка может иметь… Если она меньше заданного уровня значимости α=0,05, то величина R2… Вывод:

Оценка погрешности регрессионной модели

Погрешность регрессионной модели выражается в процентах и рассчитывается как величина .100. В адекватных моделях погрешность не должна превышать 12%-15%. Значение приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин…

Экономическая интерпретация коэффициента эластичности.

Средние значения и приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3). Расчет коэффициента эластичности: =………._________ =………..%

Таблица 2.10

Регрессионные модели связи

Коэффициенты уравнения могут иметь формат mE-p,тогда они должны быть приведены к виду m*10-p.(Cм. Примечание 1 к п. 5.1.1). Вывод: Максимальное значение индекса детерминации R2=…………............ Следовательно, наиболее адекватное исходным данным…

ПРИЛОЖЕНИЕ

Результативные таблицы и графики

Распечатка Листа 2 Рабочего файла

 


КАФЕДРА СТАТИСТИКИ

 

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы

 

Автоматизированный анализ динамики социально-экономических явлений в среде MS Excel

 

Вариант № ____

 

 

Выполнил: ст. III курса гр._______________

____________________

ФИО

Проверил:_______________________

ФИО

 

Москва ………..г.


 

Постановка задачи статистического исследования

Полученные два ряда динамики представлены на Листе 3 Рабочего файла в формате электронных таблиц процессора Excel, годовые данные – в диапазоне… Таблица 3.1 Исходные данные

Задача 1.1.

1) базисный способ, при котором каждый последующий уровень сравнивается с одним и тем же уровнем, принятым за базу сравнения (то есть база сравнения… 2) цепной способ, при котором каждый последующий уровень сравнивается с… Соответственно различают:

Задача 1.2.

В анализе динамики явления в зависимости от вида исходного ряда динамики используются различные средние показатели динамики, характеризующие… Средний уровень ряда динамики ()характеризует типичную величину уровней… Для интервального ряда динамики с равноотстоящими уровнями средний уровень ряда определяется как простая…

Вывод.

За исследуемый период средний объем реализации произведенной продукции составил ………….. млн. руб. Выявлена положительная (отрицательная) динамика реализации продукции: ежегодное увеличение (снижение) объема реализации составляло в среднем ……….. млн. руб. или …….%.

При среднем абсолютном приросте …………млн. руб. отклонения по отдельным годам незначительны (значительны).

Задание 2.

Прогноз показателя выпуска продукции на 7-ой год методом экстраполяции

Выполнение Задания 2 заключается в решении двух задач: Задача 2.1. Прогнозирование выпуска продукции предприятием на год вперёд с… Задача 2.2. Прогнозирование выпуска продукции предприятием на год вперёд с использованием аналитического выравнивания…

Задача 2.1.

, (1), (2),  

Вывод.

Как показывают полученные прогнозные оценки, прогнозируемые объемы выпуска продукции на 7-ой год (по данным шестилетнего периода) достаточно близки (значительно отличаются) между собой: ………… и ……………млн.руб. Расхождение полученных данных объясняется тем, что в основу прогнозирования положены разные методики экстраполяции рядов динамики.

Задача 2.2.

Рис. 3.1 ВНИМАНИЕ!!! Инструмент МАСТЕР ДИАГРАММ строит уравнения, обозначая независимую… Выбор наиболее адекватной трендовой модели определяется максимальным значением индекса детерминации R2: чем ближе…

Выявление тенденции развития изучаемого явления (тренда) методами скользящей средней и аналитического выравнивания по данным о выпуске продукции по месяцам за 6-ой год.

Выполнение Задания 3 заключается в решении двух задач:

Задача 3.1. Расчет скользящей средней ряда, полученной на основе трёхзвенной скользящей суммы.

Задача 3.2. Аналитическое выравнивание ряда динамики по прямой и параболе.

Задача 3.1.

Таблица 3.5 Вывод: Анализ данных табл.3.5 показывает, что значения скользящей средней изменяются закономерно (незакономерно).…

– Конец работы –

Используемые теги: Автоматизированный, орный, анализ, статистической, совокупности, среде, MS, Excel0.165

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Автоматизированный априорный анализ статистической совокупности в среде MS Excel
КАФЕДРА СТАТИСТИКИ... Инструкция по выполнению лабораторных работ...

Автоматизированный априорный анализ статистической совокупности в среде MS Excel
КАФЕДРА СТАТИСТИКИ...

Автоматизированный априорный анализ статистической совокупности в среде MS Excel
О Т Ч Е Т... о результатах выполнения... компьютерной лабораторной работы...

Предмет и метод статистики. Правовая статистика как часть статистической науки. Статистическое наблюдение его задачи. Формы, виды и способы статистического наблюдения
Негосударственное образовательное учреждение высшего профессионального образования... Санкт Петербургский институт внешнеэкономических связей экономики и права...

Статистическая обработка и статистический анализ данных
Владение методами статистики дает возможность превращать безликую и разрозненную массу числовых данных в стройную систему знаний, основываясь на… Цель курсового проекта – освоить инструменты статистики для дальнейшего… Можно выделить следующие задачи данного курсового проекта: - приобрести навыки работы с большими массивами данных и…

СТАТИСТИЧЕСКИЙ АНАЛИЗ ДАННЫХ В MS EXCEL
СТАТИСТИЧЕСКИЙ АНАЛИЗ ДАННЫХ В MS EXCEL... Цель работы использование статистических функций для анализа данных в MS Excel построение графиков и гистограмм...

Работа в среде EXCEL. Средства управления базами данных в EXCEL
Мастер функций, палитра формул. 13. Задание условий в Excel. Использование логических функций ЕСЛИ, И, ИЛИ. 14. Диаграммы. Построение,… Ссылки на ячейки другого листа. 18. Понятия базы, записи, поля данных. Системы… Примеры. 19. Создание баз данных в EXCEL. Размер базы данных.

КУРСОВАЯ РАБОТА на тему Статистическая обработка выборки. Статистический анализ работы, использования подвижного состава на железнодорожном транспорте
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ... МИИТ... Институт экономики и финансов...

Операционная система MS DOS. Приглашение MS DOS. Диалог Пользователя с MS DOS
Запуститьпрограмму на выполнение - значит загрузить программу вОЗУ,передать ей если необходимо информацию в виде параметров вкомандной строке MS… Описаниепрограммы-оболочки Dos-Shell выходит за рамки даннойТемы .Эта… Пользователь,за эту простоту, платит тем,что знания егодолжны быть столь обширны в области внутреннихи внешних…

Операционная система MS DOS. Основные принципы хранения информации на магнитных дисках в MS DOS. Файловая система MS DOS
Размер Кластера NРазмерСектора N 512 байт, где N 2,4,8 и т.д. FAT - Таблица размещения файлов НАКОПИТЕЛИ НА МАГНИТНЫХ ДИСКАХ Магнитные диски… Для работы с Магнитными Дисками используется устройство, называ- емое… Контроллер дисковода вставляется в один из свободных разъемов сис- темной платы IBM PC MotherBoard. Дисковод содержит…

0.051
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам