рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение абстрактного цифрового автомата

Определение абстрактного цифрового автомата - раздел Транспорт, Теория цифровых автоматов Обобщённая Структура Системы Обработки Цифровой Информации, Приведённая На Ри...

Обобщённая структура системы обработки цифровой информации, приведённая на рис.1, соответствует описанию абстрактного цифрового автомата. Для целей технического проектирования в каноническую структурную систему цифрового автомата необходимо включить систему синхронизации или систему задания автоматного времени. Введение системы автоматного времени обеспечивает устойчивость работы технического устройства - цифрового автомата и дискретный характер временных процессов в нём.

С помощью импульсов синхронизации исключается возможность некорректной работы цифрового автомата во время протекания переходных процессов в элементах блока памяти и в комбинационных схемах. Цифровые автоматы, работающие под управлением системы задания дискретного автоматного времени, называются синхронизированными цифровыми автоматами. Наличие системы задания дискретного автоматного времени накладывает ограничения и на порядок изменения входных управляющих сигналов множества X. Поскольку сигналы множества X формируются в других блоках сложной информационной системы, то учёт ограничений системы задания дискретного времени приводит к практической необходимости включения в информационную систему любой сложности единой системы синхронизации.

 

Для абстрактного математического описания цифрового автомата как кодопреобразователя (рис.1) используется его представление как шестиэлементного множества:

S ={A, X ,Y, d, l, a1}, (32)

где: A = {a1, .., am, ..., aM} - множество состояний автомата (алфавит состояний); X = {z1, ..., zf, ..., zF} - множество входных сигналов автомата (входной алфавит); Y = {w1, ..., wg, ..., wG} - множество выходных сигналов (выходной алфавит);

d - функция переходов абстрактного цифрового автомата, реализующая отображение множества Dd в A (Dd является подмножеством прямого произведения множеств A´X, то есть Dd Í A´X). Таким образом, любое состояние цифрового автомата as = d(am, zf), поскольку множество A´X является множеством всевозможных пар (a, z) и as Î A.

l - функция выходов абстрактного цифрового автомата, реализующая отображение множества Dl в Y (Dl является подмножеством прямого произведения множеств A´X, то есть Dl Í A´X). Таким образом, любой выходной сигнал множества Y wg = l(am, zf);

a1 - начальное состояние автомата (a1 Î A). Поведение цифрового автомата существенно зависит от начального состояния. Для однозначного управления цифровым автоматом необходимо, чтобы он начинал работу из определённого начального состояния. Цифровой автомат с установленным (выделенным) начальным состоянием a1 называется инициальным.

Автомат является конечным, если A, X и Y - не являются бесконечными множествами.

Автомат является полностью определённым, если Dd = Dl = A´X. Иными словами, у полностью определённого автомата области определения функций d и l совпадают с множеством A´X - множеством всевозможных пар (am, zf). У частичного автомата функции d и l определены не для всех пар (am, zf) Í A´X.

Теоретически все элементы множеств A, X ,Y могут быть закодированы числами в системах счисления с любым основанием, но практически всегда используется двоичная система счисления (двоичный структурный алфавит).

Для двоичной системы счисления обозначим:

A = {a1, .., am, ..., aM}, X = {x1, ...,xf, ...,xF}, Y = {y1, ..., yg, ...,yG} и определим разрядность двоичных кодов состояний, входного сигнала и выходного сигнала. Количество разрядов двоичного кода всегда целое число.

Количество разрядов двоичного кода состояний

p = ]log2M[. (33)

Количество разрядов двоичного кода входных сигналов

r = ]log2F[. (34)

Количество разрядов двоичного кода выходных сигналов

d = ]log2G[. (35)

В этих формулах ]...[ - означает ближайшее большее к значению внутреннего выражения целое число.

Согласно структурной схеме рис.21 коды наборов переменных комбинационных схем определяются в результате конкатенации кодов входных сигналов и кодов состояний блока памяти. Как наборы входных переменных, так и коды состояний блока памяти содержат запрещённые комбинации и поэтому системы функций алгебры логики, описывающих комбинационные схемы, будут не полностью определёнными.

Максимально возможное количество запрещённых кодов наборов переменных комбинационных схем определится как:

В зависимости от схемы кодирования входных сигналов и состояний, среди этих запрещённых наборов могут оказаться одинаковые, и поэтому реально количество запрещённых наборов на число совпадающих кодов меньше, чем определённое по ф.(36).

Часто на практике используется две разновидности цифровых автоматов, отличающихся способом формирования выходных сигналов:

- при описании функционирования автомата выражениями:

a(t+1) = d[a(t), z(t)],

w(t) = l[a(t), z(t)] - он называется автоматом Мили;

- при описании функционирования автомата выражениями:

a(t+1) = d[a(t), z(t)],

w(t) = l[a(t)] - он называется автоматом Мура.

В этих выражениях t - текущий момент дискретного автоматного времени, t+1 - следующий момент дискретного автоматного времени.

 

– Конец работы –

Эта тема принадлежит разделу:

Теория цифровых автоматов

Южно-уральский государственный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение абстрактного цифрового автомата

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Базис И, ИЛИ, НЕ. Свойства элементарных функций алгебры логики
  Пусть x - некоторая логическая переменная. Тогда: 1. , что означает возможность исключения из логического вы

Табличное описание булевых функций
  Вследствие конечности множества наборов заданного количества логических переменных, простейшим и самым естественным способом описания ФАЛ является табличный. Пример описания трёх ФА

Аналитическое описание булевых функций
На примерах описания ФАЛ, приведенных в таблице 3, видно, что конституента 1 может быть описана в виде элементарной конъюнкции переменных:

Геометрическое представление булевых функций
  В геометрическом представлении ФАЛ значения входных переменных n - местного набора интерпретируются как координаты в n - мерной декартовой системе координат. Координат

Минимизация с помощью минимизирующих карт
  Как было отмечено выше, одним из способов представления ФАЛ от небольшого числа переменных (обычно не больше 5) являются диаграммы Карно или Вейча, которые строятся на развёртках мн

Минимизация функций алгебры логики по методу Квайна
  При минимизации по методу Квайна в базисе И, ИЛИ, НЕ исходная ФАЛ задаётся в СДНФ. Целью минимизации является нахождение всех первичных импликант и выбор некоторых из них для

По методу Квайна - Мак-Класки
  Недостаток метода Квайна - необходимость исчерпывающего попарного сравнения или сопоставления всех минтермов на этапе нахождения первичных импликант. С ростом числа минтермов увелич

Логические элементы И и И-НЕ
(Позитивная логика) Схема логического элемента И, построенного на полупроводниковых диодах и резисторе, приведена на рис.10а).

Логические элементы ИЛИ, ИЛИ-НЕ
  Схема логического элемента ИЛИ, построенного на полупроводниковых диодах и резисторе, приведена на рис.12а).

Программируемые логические матрицы (ПЛМ)
  Программируемая логическая матрица [2] представляет собой функциональный блок, созданный на базе интегральной полупроводниковой технологии и предназначенный для реализации логически

Процедуры программирования ПЛМ
Физическим принципом программирования ПЛМ является пережигание (испарение) выбранных перемычек. В процессе эксплуатации ПЛМ могут возникнуть следующие задачи: - начальное программ

Методы описания цифровых автоматов
  Чтобы задать цифровой автомат S, необходимо описать все элементы множества S = { A, X ,Y, d, l, a1}, то есть входной и выходной алфавиты и алфавит состояний, а также функ

Синхронные и асинхронные цифровые автоматы
Состояние as автомата S называется устойчивым состоянием, если для любого входа zfÎX, такого, что d(am, zf) = as, имеет место d(as

Цифровых автоматов Мили и Мура
Абстрактный цифровой автомат работает как преобразователь слов входного алфавита в слово в выходном алфавите [5]. Рассмотрим это положение, взяв в качестве примера автомат Мили S1.

Минимизация абстрактного автомата Мили
  Для табличного описания процедура минимизации цифровых автоматов алгоритмизирована и выполняется в несколько шагов.   Шаг 1 Распространение неопределённости т

Минимизация абстрактного автомата Мура
Минимизация автоматов Мура основана на тех же принципах, что и минимизация автоматов Мили. Для табличного описания эта процедура алгоритмизирована и состоит из трёх шагов.  

Элементарные автоматы памяти
  Комбинационная схема с обратными связями, имеющая два устойчивых состояния и предназначенная для хранения одного бита информации, называется элементарным автоматом или триггером. Со

Синхронизация в цифровых автоматах
  Смена состояний в синхронизированных автоматах происходит в определённые моменты времени, задаваемые по цепям синхронизации внешним тактовым генератором. Изменение состояний в реаль

Структурный синтез цифрового автомата по графу
  Табличный и графический способы задания автоматов эквивалентны, поэтому граф автомата содержит всю необходимую информацию о функциях выходов и функциях переходов. На граф кодированн

Декомпозиция устройств обработки цифровой информации
  В любом устройстве или системе обработки цифровой информации можно выделить два существенно различающихся блока (рис.63): - операционный блок (или операционный автомат);

Управляющие автоматы
Любая команда, операция или процедура, выполняемая в операционном блоке, описывается некоторой микропрограммой и реализуется за несколько тактов, в каждом из которых выполняется шаг микропрограммы

Принцип действия управляющего автомата с хранимой в памяти логикой и микропрограммное управление
  Хранимая в памяти микропрограмма должна содержать информацию о функциях переходов и выходов управляющего микропрограммного автомата. Рассматривая управляющий автомат (УА) в терминах

Горизонтальное микропрограммирование
  При горизонтальном микропрограммировании каждому биту операционной части микрокоманды ставится в соответствие определённый управляющий функциональный сигнал, то есть определённая ми

Вертикальное микропрограммирование
  При вертикальном микропрограммировании микрооперация определяется не состоянием одного из бит микрокоманды, а двоичным кодом, содержащимся в операционной части микрокоманды (

Горизонтально - вертикальное микропрограммирование
  В этом случае подмножества VL представляются горизонтальным способом , а микрооперации внутри каждого из подмножеств - вертикальным способом (рис.66). Для каждого подмнож

Граф - схемы микропрограммных автоматов
  Для описания микропрограмм необходимо знать и задавать последовательности микрокоманд и функции перехода, определяющие порядок выполнения микрокоманд. Для описание микропрограмм обы

Синтез микропрограммного автомата Мили
  Конечный автомат, реализующий микропрограмму работы дискретного устройства, называется микропрограммным автоматом. Синтез микропрограммного автомата Мили по граф - схеме ал

Синтез микропрограммного автомата Мура
Синтез автомата Мура по граф - схеме алгоритма также состоит из двух этапов: - получение отмеченной ГСА; - построение графа автомата. На первом из этих этапов начальная,

Минимизация микропрограммных автоматов
  Изложенный ранее метод минимизации абстрактных автоматов применяется и для минимизации полностью определённых микропрограммных автоматов. Если два состояния автоматы Мили с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги