рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Управляющие эндокринные железы

Управляющие эндокринные железы - раздел Медицина, Влияние эпифиза и его гормонов на функционирование организма Управляющие Эндокринные Железы. Гипоталамусгипоталамус, Или Подбугровая Облас...

Управляющие эндокринные железы. ГипоталамусГипоталамус, или подбугровая область промежуточного мозга, является высшим центром интеграции и регуляции вегетативных функций организма. Он принимает участие в корреляции различных соматических функций, регуляции работы желудочно-кишечного тракта, сна и бодрствования, водно-солевого, жирового и углеводного обмена, поддержания температуры тела и гомеостаза.

Одна из наиболее важных функций гипоталамуса связана с регуляцией деятельности эндокринной системы организма. Разнообразие функции гипоталамуса обусловлено сложностью его морфологического строения и обилием связей с различными отделами нервной системы, органами чувств, внутренними органами и внутренней средой организма. Строение гипоталамуса. Гипоталамус относится к филогенетически древним образованиям мозга и хорошо развит уже у низших позвоночных.

Он образует дно третьего желудочка и лежит между перекрестом зрительных нервов и задним краем маммилярных тел. В состав гипоталамуса входит серый бугор, срединное возвышение, воронка и задняя или нервная доля гипофиза. Спереди он граничит с преоптической областью, которую отдельные авторы также включают в систему подбугорья. Гипоталамус развивается в ранний период эмбриогенеза из переднего мозгового пузыря. В процессе развития головного мозга, после обособления больших полушарий, передний мозговой пузырь дает начало межуточному мозгу, а его полость превращается в третий желудочек.

В дне этого желудочка путем выпячивания образуется мозговая воронка, дистальный конец которой превращается в заднюю долю гипофиза. Основание воронки значительно утолщается и дает начало серому бугру. В ка-удальной части образуются парные маммилярные тела. Боковые стенки третьего желудочка образуют зрительные бугры, связанные с большими полушариями головного мозга.

Центральное серое вещество гипоталамуса без резкой границы переходит в центральное серое вещество среднего мозга. Нервные клетки в гипоталамусе собраны в более или менее обособленные группы или ядра, которые занимают в нем определенное место и состоят из различных по своему строению невронов. Разнообразие нейрального состава ядер гипоталамуса обусловлено их функциональной дифференциройкой. В литературе пока отсутствует единая номенклатура гипоталамических ядер. Пинес и Майман выделяют в гипоталамусе передний, средний и задний отделы.

В каждом отделе они различают следующие ядра. Передний отдел 1 супрахиазматическое 2 супраоптическое передние, латеральные и медиальные отделы 3 пара-вентрикулярное. Средний отдел 1 супраоптическое задние отделы 2 туберальные верхние, средние и нижние 3 паллидо-инфундибулярное 4 маммило-инфундибулярное. Задний отдел 1 маммило-инфундибулярные 2 ядра маммилярных тел внутреннее, наружное, вставочное 3 супра-маммилярные.

Филогенетически наиболее древними образованиями гипоталамуса являются паравентрикулярное и супраоптическое ядра. Они гомологичны преоптическим ядрам низших позвоночных. Супраоптическое ядро лежит в переднем гипоталамусе над хиазмой и проходит в дорсолатеральном направлении от зрительного перекреста до середины серого, бугра. Оно подразделяется на отдельные группы нейронов, соединенных между собой клеточными мостиками. Не менее характерной группировкой клеток гипоталамуса является паравентрикулярное ядро, расположенное под передней коммисурой в стенке третьего желудочка.

Паравентрикулярное ядро развивается из того же самого клеточного материала, что и супраоптическое ядро. В строении клеток этих ядер обнаруживается значительное сходство. Они имеют округлую, грушевидную или удлиненную форму и от нейронов других ядер гипоталамуса и центрального серого вещества отличаются значительно более крупными размерами. Васкуляризация гипоталамуса. Гипоталамическая область характеризуется обильным кровоснабжением.

Наибольшей васкуляризацией отличается паравентрикулярное и супраоптическое ядра, в которых каждая клетка связана с 2-3 капиллярами. Здесь на площадь 1 мм2 приходится до 2650 капилляров. Электронно-микроскопические исследования показали, что в местах контакта между телом нейрона и сильно утонченной базальной мембраной эндотелия капилляров часто совсем нет глиальной прослойки. Вследствие этого сосуды обладают очень хорошей проницаемостью даже для высокомолекулярных белковых соединений.

Из крови в клетки супраоптических и паравентрикулярных ядер легко поступают питательные вещества, гормоны и другие химические соединения. Гипоталамические образования поэтому обладают высокой чувствительностью к отклонениям в составе гуморальной среды организма и отвечают на них изменением физиологической активности. Важнейшее значение в механизме гипоталамической регуляции гормональной функции гипофиза имеет общность их васкуляризации. Между гипоталамусом и передней долей гипофиза существует специальная система кровообращения, получившая название воротной, или портальной, системы сосудов гипофиза.

Она состоит из артериол, которые берут начало от артерий виллизиевого круга. Артериолы проникают в срединное возвышение серого бугра и здесь распадаются на большое количество капилляров. В срединном возвышении клубочки и петли этих капилляров вступают в тесный контакт с окончаниями нервных волокон клеток нейросекреторных ядер гипоталамуса и образуют с ними так называемые вазоневральные синапсы.

Первичные капилляры в сером бугре собираются в портальные вены, которые по гипофизарной ножке идут в переднюю долю гипофиза, и в его паренхиме распадаются в густую сеть синуооидных капилляров вторичная капиллярная сеть. В заднюю долю гипофиза сосуды портальной системы не проникают, и кровь в нее поступает из других источников. Движение крови по портальной системе от гипоталамуса к гипофизу происходит в результате сокращения стенок сосудов.

В переднюю долю гипофиза кровь поступает еще по средней и задней гипофизарным артериям, а также по сосудистым анастомозам из нейрогипофиза. Связи гипоталамуса. Гипоталамическая область имеет обширные связи с различными отделами центральной нервной системы, в том числе с ретикулярной формацией ствола мозга, гипофизом и т. д. Среди проводящих путей гипоталамуса различают эфферентные, афферентные и внутригипоталамические связи. Эфферентные пути от гипоталамуса идут к таламусу гипоталамо-таламический путь, покрышке маммилотегментальный путь, от всех ядер гипоталамуса к нижележащим симпатическим образованиям и узлам диффузные нисходящие связи, от гипоталамуса к гипофизу гипоталамо-гипофизарный тракт. В гипоталамо-гипофизарных путях выделяют супраоптикогипофизарный, а также туберогипофизарный пути. Первый путь образован большим количеством до 10 аксонов клеток супраоптического и паравентрикулярного ядер, которые по ножке гипофиза поступают в заднюю долю гипофиза.

Эти волокна проходят во внешнем слое срединного возвышения и не проникают из задней в переднюю долю гипофиза.

В регуляции функций эндокринной системы особое значение имеет тубероинфундибулярный путь, который передает эфферентацию из гипоталамуса в переднюю долю гипофиза. Волокна этого пути прослеживаются до срединного возвышения, где их окончания с петлями и клубочками первичных капилляров портальной системы образуют рассмотренные выше вазоневральные синапсы. Афферентные пути к ядрам гипоталамуса идут от таламуса, лобных долей, гиппокампа, зрительного бугра, амигдалоидного комплекса, миндалин, экстрапирамидной системы и ретикулярной формации ствола мозга. Ретикулярной формации приписывается большое значение в регуляции функции гипоталамуса и эндокринной системы.

Исследованиями Грина, Русселя и др. установлено, что ядра гипоталамуса находятся в тесной анатомической и функциональной связи с ретикулярной формацией. Последняя образована сложным комплексом невронов различной величины, которые диф-фузно рассеяны в стволе мозга.

Для отростков клеток ретикулярной формации характерно наличие большого количества коллатералей, через посредство которых один аксон может вступать в функциональные связи с множеством нервных клеток до 20 000 . Ретикулярная формация, как впервые было установлено Мэгуном и Мурицци, оказывает общее активирующее действие на различные отделы мозга и состоит из восходящей и нисходящей систем. Волокна восходящей системы от каудальных частей продолговатого мозга, варолиева моста и среднего мозга проецируются на различные участки коры больших полушарий нисходящие же волокна связывают ретикулярную формацию с системой спинного мозга.

В ретикулярную формацию проецируется огромное количество волокон от ядерных образований ствола мозга, рецепторов внутренних органов, от аппаратов зрения, слуха и проводников чувствительности. Ретикулярная формация отличается высокой чувствительностью к изменениям гуморальной среды организма.

На воздействие гормонов и различных химических соединений она быстро отвечает изменением своей физиологической активности. Гипоталамус получает восходящие волокна преимущественно от ретикулярной формации среднего мозга. Через покрышку среднего мозга и задний отдел гипоталамуса эти волокна достигают серого бугра. На этой морфологической основе осуществляется функциональная связь между ретикулярной формацией, гипоталамусом и эндокринными железами. Ретикулярная формация среднего мозга передает импульсы через гипоталамус к эндокринным железам организма и оказывает активизирующее действие на ядра подбугорья. Нейросекреторная деятельность гипоталамуса.

Нейроны отдельных ядер гипоталамуса проявляют способность к секреторной деятельности нейрокринии и вырабатывают особые вещества нейросекреты, которые играют важную роль в регуляции функции эндокринной системы. Пионерами в изучении гипоталамической нейросекреции являются Шаррер и Гаупп, которые еще в 1933 г. обнаружили в клетках переднего гипоталамуса гранулы и капельки нейросекрета.

Последующими исследованиями было установлено широкое распространение явлений нейросекреции не только у позвоночных, но и беспозвоночных животных. Нейросекреторные невроны гипоталамуса одновременно сочетают в себе свойства нервных и железистых клеток. Они относятся к мультиполярным невронам с относительно крупным ядром и содержат нейрофибриллы, хорошо развитую систему эргастоплазмы субстанцию Ниссля с рибосомами и общие для всех клеток органоиды. Нейросекреторные процессы наиболее полно изучены в клетках супраоптического и паравентрикулярного ядер. Нейросекрет представлен гранулярными образованиями, обладающими известным постоянством своего строения.

Гранулы имеют вид гомогенных шариков и пузырьков, окруженных мембраной. В зависимости от специфического отношения к красителям различают гомориположительный и гомориотрицательный нейросекрет. Первый хорошо окрашивается хромовоквасцовым гематоксилином по Гомори в темно-синий цвет гомориотрицательное или оксифильное нейросекреторное вещество при окраске по Гомори красится флоксином в розовый цвет. Химическая природа нейросекрета окончательно не выяснена.

Гомориположительное вещество обладает относительно высокой химической устойчивостью и является сложным белково-полиса-харидо-липидным соединением. Гомориотрицательный нейросекрет является относительно простым протеином, богатым аминокислотами с сульфгидрильными и дисульфидными группами. Первичный биосинтез нейросекрета в клетках происходит в приядерной зоне цитоплазмы.

В перинуклеарной области он появляется в виде мелких пылевидных зернышек, которые затем распространяются по всей клетке. Образование нейросекрета связано с уменьшением размеров ядра и ядрышка, а также заметной редукцией субстанции Ниссля. Электронномикро-скопические исследования показывают, что в синтезе нейросекрета главную роль играет эргастоплазма с ее системой рибосом и аппарат Гольджи Шаррер и др Считают, что образование нейросекрета в клетках ядер гипоталамуса протекает по апокриновому, меракриновому и голокриновому типам Поленов. Интенсивность синтеза секрета и выведения его из клеток меняется в зависимости от времени года, условий температурного и светового режимов, физиологического состояния организма, стадии полового цикла и т. д. При дегидратации организма, например, в клетках паравентрикулярного и супраоптического ядер значительно уменьшается содержание нейросекреторного вещества.

Возрастные изменения гипоталамической нейросекреции изучены еще недостаточно.

Образование нейросекрета в супраоптических и паравентрикулярных ядрах гипоталамуса начинается уже в ранний период индивидуального развития. В ранний период развития в гипоталамусе содержится меньше нейросекрета, чем у взрослых. Нейросекрет оказывает физиологическое действие через гуморальную среду организма. В связи с этим значительный интерес представляет вопрос о путях его выведения из нейронов ядер гипоталамуса.

Микроскопическими исследованиями установлено, что из невронов супраоптических и паравентрикулярных ядер гранулы гомориположительного нейросекрета по длинным аксонам гипоталамо-гипофизарного тракта токами аксоплазмы смещаются в заднюю долю гипофиза. По мере передвижения от места образования до окончания нервных отростков изменяются химические и тинкториальные свойства нейросекрета. По данным отдельных исследователей, нейросекрет может синтезироваться и в терминалях аксонов, лежащих в задней доле гипофиза Дипен. Задняя доля гипофиза является, таким образом, резервуаром для гипоталамического гомориположительного нейросекрета.

Отсюда нейросекрет поступает в кровеносное русло. Часть нейросекреторного вещества может попадать в кровеносное русло и через ликвор третьего желудочка. Кроме того, нейросекреторные клетки посылают свои аксоны к обонятельным ядрам и эпендиме боковых желудочков переднего мозга. Депонированный в задней доле гипофиза, гомориположительный нейросекрет является носителем физиологически высокоактивных гормонов вазопрессина и окситоцина.

По мнению некоторых авторов, окситоцин образуется в паравентрикулярном, а вазопресин в супраоптическом ядрах. Другие же исследователи считают, что, в зависимости от физиологического состояния организма, клетки одного и того же ядра могут синтезировать оба гормона. Гипоталамический нейросекрет поступает также в переднюю долю гипофиза и контролирует ее гормональную функцию. Однако сюда он поступает из подбугорья не по нервным окончаниям, а с током крови, циркулирующей по сосудам портальной системы.

Гуморальный путь транспортировки вырабатываемых клетками гипоталамуса веществ в переднюю долю гипофиза доказывается прямыми экспериментами. Бенуа и Ассенмахер указывают, что перерезка только одной ножки не оказывает существенного влияния на гормональную функцию гипофиза. Перерезка же портальной системы сосудов, при сохранении целостности гипофизной ножки, приводит к угнетению физиологической активности передней доли гипофиза.

Показано также, что кровь, взятая из портальных сосудов, стимулирует гипофиз, тогда как кровь из сонной артерии этими свойствами не обладает. Эти эксперименты показывают, что из гипоталамуса в переднюю долю гипофиза действительно поступают вещества, которые активируют его гормональную деятельность. Однако природа этих веществ изучена еще недостаточно. Микроскопическими исследованиями установлено, что во внутреннем слое срединного возвышения амиэлиновые волокна тубероинфундибулярного пучка, берущие начало от клеток ядер серого бугра, своими окончаниями вступают в связь с расположенными здесь короткими петлями и клубочками первичных капилляров портальной системы.

В этих вазоневральных синапсах отростки нервных клеток гипоталамуса отдают в кровь портальной системы секреторное вещество, которое поступает затем в паренхиму передней доли гипофиза. Этот нейросекрет, выделяемый ядрами серого бугра, однако, не окрашивается по Гомори. Отдельные исследователи отождествляли его с медиаторами нервных клеток ацетилхолином и норадреналином. В настоящее время эта теория уже почти совсем не имеет сторонников.

Исследования показали, что нейросекрсторное вещество от обычных метаболитов нервных клеток отличается более высокой энзиматической устойчивостью и способностью оказывать физиологическое действие на значительном расстоянии от места своего образования в гипоталамусе. Значительный интерес представляет тот факт, что при электролитическом повреждении отдельных участков срединного возвышения в передней доле гипофиза подавляется образование и выведение в кровь не всех, а только какого-либо одного гормона, активирующего функцию строго определенной периферической эндокринной железы.

На этом основании считают, что отдельные нервные волокна от различных клеток гипоталамуса несут в срединное возвышение и отдают в кровь портальной системы не одно, а несколько особых веществ или нейрогуморов Каррато и др которые реализуют различные функции передней доли гипофиза гонадотропную, тиреотропную и адренокортикогропную. Возможно, различные нейрогуморы сосудами портальной системы проецируются на определенные зоны паренхимы передней доли гипофиза. Как уже отмечалось, значение гомориположительного нейросекрета в регуляции гормональной функции гипофиза изучено еще недостаточно.

Обычными методами окрашивания его не удается выявить в туберогипофизарном пути и в крови портальной системы. Вместе с тем вокруг капилляров, в их эндотелии и между секреторными клетками передней доли гипофиза часто накапливается значительное количество гранул, которые проявляют такие же реакции, как и гипоталамический неиросекрет. При избыточном введении в организм поваренной соли происходит быстрое выведение нейросекрета из задней доли гипофиза, супраоптического и паравентрикулярного ядер. В этих условиях нейросекретом обогащаются и секреторные клетки передней доли гипофиза Войткевич и др Отдельные исследователи допускают, что в осуществлении связи гипоталамуса с гипофизом важную роль могут играть вазопресин и окситоцин, носителями которых является неиросекрет паравентрикулярного и супраоптического ядер Мартини и др Следует, однако, отметить, что методом хроматографии Саффрон удалось отделить в экстрактах задней доли гипофиза от вазопресина и окситоцина вещество, которое активирует адренокортикотропную функцию передней доли гипофиза.

Приведенные данные показывают, что вопрос о природе нейросекрета, ответственного за регуляцию функции гипофиза, еще нуждается в дальнейшей разработке.

Тем не менее, обширный фактический материал указывает на ведущее значение в гнпоталамическом контроле функции эндокринной системы васкулярных связей.

Срединное возвышение серого бугра гипоталамуса и является тем участком, во внутреннем слое которого через посредство вазоневральных синапсов осуществляется передача влияний с гипоталамуса на переднюю долю гипофиза. Значение гипоталамуса в регуляции функции эндокринной системы.

Гипоталамус принимает участие в нервной и гуморальной регуляции физиологических функций организма. Особенно велико его значение в контроле гормональной деятельности эндокринной системы. Прежде всего гипоталамус сам продуцирует вещества, которые гуморальным путем влияют на отдельные функции организма. Уже отмечалось, что нейроны супраоптического и паравентрикулярного ядер подбугорья синтезируют неиросекрет, который перемещается по нервным отросткам гипоталамо-гипофизарного тракта и аккумулируется в задней доле гипофиза.

Этот нейросекрет является носителем физиологически высокоактивных гормонов вазопресина и окситоцина. Клинические наблюдения и многочисленные экспериментальные исследования последних лет показывают, что гипоталамус оказывает доминирующее влияние на гормональную деятельность передней доли гипофиза и через нее на многие периферические железы внутренней секреции. Этот вывод основан прежде всего на экспериментах по нарушению анатомической связи между гипоталамусом и гипофизом.

Так, при перерезке гипофизарной ножки резко понижается выделение гипофизом в кровь кринотропных гормонов, активирующих функцию половых желез, коры надпочечников и щитовидной железы. При нарушении связи между гипофизом и гипоталамусом периферические железы переходят в состояние физиологической депрессии. Эта операция особенно сильно отражается на функциональном состоянии половых желез. Если после перерезки ножки портальные сосуды регенерируют и восстанавливается транспортировка из гипоталамуса нейросекрста, то тогда опять нормализуется работа передней доли гипофиза и периферических желез. Представления о механизмах передачи регулирующих влияний с гипоталамуса на гипофиз за короткую историю разработки этой важной проблемы современной эндокринологии претерпели существенные изменения.

На первых этапах ее разработки многие исследователи считали, что влияние гипоталамуса на гипофиз осуществляется через посредство парасимпатической и симпатической нервной системы.

Поскольку, однако, прямая нервная связь между ними, отсутствует, то Шаррер уже давно высказал предположение, что гипоталамическая регуляция гормональных функций гипофиза осуществляется преимущественно гуморальным путем при участии нейросекрета. Это положение в дальнейшем подтвердилось не только в опытах с перерезкой портальных сосудов, но и в экспериментах по трансплантации гипофиза в различные органы. При пересадке его гипофизэктомированным животным в почку или в височную долю Гаррис и Якобсон гипофиз приживляется, васкуляризируется, но в этих условиях угнетается его гормональная деятельность.

Если же этот гипофиз затем подсадить в область срединного возвышения, то после врастания портальных сосудов его гормональная деятельность быстро восстанавливается. Такой же результат получен при совместной инкубации вне организма гипофиза с фрагментами гипоталамуса или при добавлении в культуру экстракта из срединного возвышения подбугорья. Многочисленные экспериментальные исследования подтверждают, что гипоталамический контроль гормональной функции гипофиза действительно осуществляется через кровь уже рассмотренными прежде нейрогуморами реализующими факторами. В экспериментальных условиях на функцию передней доли гипофиза может оказывать влияние и суммарный экстракт из нейрогипофиза.

На этом основании отдельные исследователи допускают, возможность действия на гормонопоэз передней доли гипофиза и нейросекрета, который поступает в кровеносное русло из нейрогипофиза.

Значительный интерес представляет вопрос о локализации в гипоталамусе участков, ответственных за регуляцию различных гормональных функций гипофиза. При его разработке в настоящее время используются различные приемы. Наиболее широкое применение получил метод точечной электрокаугуляции гипоталамуса, осуществляемой с помощью стереотаксического аппарата, позволяющего производить строго координированные передвижения электродов. Следует, однако, отметить, что и применение стереотаксической техники не устраняет затруднений в решении поставленного вопроса о топографической локализации в гипоталамусе различных зон, регулирующих отдельные функции гипофиза, так как входящие в его состав клеточные компоненты находятся в сложных морфологических и функциональных взаимоотношениях между собой и другими отделами нервной системы.

Поэтому повреждение одного участка неизбежно приводит к морфологическим и функциональным нарушениям других компонентов системы. Кроме того, в строении и функциональной дифференцировке отдельных частей гипоталамуса наблюдаются и видовые различия.

Вследствие этого полученные различными исследователями данные о значении отдельных участков гипоталамуса в регуляции эндокринных функций организма порою носят противоречивый характер. В настоящее время вполне определенно можно говорить лишь о том, что гипоталамус контролирует гонадотропную, тиреотропную и аденокортикотропную функции передней доли гипофиза. Для осуществления этих функций, по Бенуа, например, необходима целостность зоны переднего гипоталамуса, расположенной под паравентри-кулярным ядром на границе с преоптическим и туберальным участками.

Рассмотренные выше данные показывают, что гипоталамус и гипофиз в морфологическом и функциональном отношении образуют единую гипоталамо-гипофизарную систему, в которой нервные импульсы переключаются на гуморальные. Значительный интерес, представляет вопрос о механизме работы этого своеобразного пульта управления эндокринными функциями организма.

Обширный материал экспериментальных исследований позволяет рассматривать гипоталамус, гипофиз и периферические железы железы-мишени как звенья единой системы, функциональная деятельность которой подчиняется принципу обратных связей с самонастройкой на оптимальный для данных условий жизни организма режим работы. Разработке этих вопросов в свое время много внимания уделял М. М. Завадовский. Давно известно, что избыток в крови гормонов желез-мишеней автоматически приводит к угнетению, а их недостаток - к стимуляции соответствующих тронных функций передней доли гипофиза.

Причем угнетение тронной функции наступает в результате повышения концентрации в крови гормона железы-мишени, при некоторых условиях, может осуществляться и непосредственно через гипофиз. Обратный же механизм регуляции, т. е. стимуляция тропной функции гипофиза понижением содержания в крови гормона железы-мишени, осуществляется при обязательном участии гипоталамуса. Изменение уровня гормона в крови является, таким образом, сигналом, который воспринимается клетками соответствующих ядер гипоталамуса.

При описании васкуляризации гипоталамуса уже отмечалось, что особенности строения стенок капилляров и их проницаемости для сложных химических соединений обеспечивают высокую чувствительность нейронов подбугорья к гормонам. Факт непосредственного действия на нейроны гормонов доказывается многочисленными экспериментами подсадки в соответствующие зоны гипоталамуса ткани эндокринных желез или аппликации синтетическими гормонами.

Например, имплантация с помощью стереотаксического аппарата кристаллов полового гормона угнетает гонадотропную функцию гипофиза и физиологическую активность половой железы. Сходный результат дает и трансплантация кусочков яичника. Таким образом, через посредство гормонов гипоталамус получает информацию об уровне активности желез-мишеней и посылает в гипофиз сигналы, в ответ на которые последний через продукцию соответствующих тройных гормонов устраняет неблагоприятные для организма отклонения в функции эндокринной системы.

Экспериментальные исследования вместе с тем показывают, что в некоторых случаях афферентная сигнализация от желез-мишеней к гипоталамусу может передаваться и нервнопроводниковым путем. Настройка рассмотренной системы обратных связей носит динамический характер и изменяется прежде всего в различные периоды онтогенеза. В регуляции функций эндокринных желез принимают также участие внегипоталамические центры нервной системы и прежде всего ретикулярная формация.

Хотя разработка этого вопроса находится еще в начальной стадии, тем не менее уже теперь имеются многочисленные доказательства ее участия в контроле гормональной активности отдельных эндокринных желез. Эксперименты показывают, что при блокировании фармакологическими средствами, частичном повреждении или раздражении ретикулярной формации электрическим током наступают значительные изменения в уровне гормональной активности отдельных эндокринных желез.

Ретикулярной формации приписывается большое значение в механизме передачи к эндокринным железам разнообразных воздействий на организм, идущих из внешней среды. Характерные изменения в гормональной деятельности надпочечников, щитовидной железы и гонад, наступающие под воздействием не обычных раздражителей в так называемых реакциях напряжения, или стресса, многие исследователи также связывают с деятельностью ретикулярной формации. Пути действия ретикулярной формации на периферические эндокринные железы изучены еще недостаточно.

Имеющиеся экспериментальные данные пока не позволяют решить вопрос о том, оказывает ли она только общее активирующее действие на гипоталамус и переключает в него информацию от внешней среды и внутренних органов или же и сама принимает непосредственное участие в регуляции физиологической активности периферических эндокринных желез. Последнее предположение подтверждается отдельными наблюдениями. Известно, что после удаления гипофиза гормональная деятельность отдельных эндокринных желез полностью не прекращается, а сохраняется на уровне так называемой базальной активности, для которой характерна суточная ритмичность.

Последняя, контролируется ретикулярной формацией. Рассмотренные факты приводят отдельных исследователей к заключению, что импульсы от ретикулярной формации могут достигать периферических желез без участия гипофиза. Таким образом, возможен и парагипофизарный путь регуляции эндокринных желез.

Ретикулярная формация не только оказывает влияние на гуморальную среду организма, но и сама реагирует на ее изменения. Это указывает на возможность участия ретикулярной формации в рассмотренном выше механизме обратных связей. 3.2 Гипофиз. В гипофизе выделяют переднюю аденогипофиз и заднюю нейрогипофиз доли. У многих животных представлена также промежуточная доля pars intermedia, однако у человека она практически отсутствует. В аденогипофизе вырабатывается 6 гормонов, из них 4 являются тропными адренокортикотропный гормон, или кортикотропин, тиреотропный гормон, или тиреотропин и 2 гонадотропина - фолликулостимулирующий и лютеинизирующий гормоны, а 2 - эффекторными соматотропный гормон, или соматотропин, и пролактин . в нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона вазопрессин. Синтез этих гормонов осуществляется в супраоптическом и паравентрикулярном ядрах гипоталамуса. Нейроны, составляющие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза.

Синтезированные в гипоталамусе окситоцин и вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получившего название нейрофизин. Гормоны аденогипофиза.

Адренокортикотропный гормон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокортикоидов в пучковой зоне коркового вещества надпочечников.

В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Кортикотропин ускоряет стероидогенез и усиливает пластические процессы биосинтез белка, нуклеиновых кислот, что приводит к гиперплазии коркового вещества надпочечников. Оказывает также вненадпочечниковое действие, проявляющееся в стимуляции процессов липолиза, анаболическом влиянии, усилении пигментации. Влияние на пигментацию обусловлено частичным сов падением аминокислотных цепей кортикотропина и меланоцитостимулирующего гормона.

Выработка кортикотропина регулируется кортиколиберином гипоталамуса. Тиреотропный гормон, или тиреотропин. Под влиянием тиреотропина стимулируется образование в щитовидной железе тироксина и трийодтиронина. Тиреотропин увеличивает секреторную активность тиреоцитов за счет усиления в них пластических процессов синтез белка, нуклеиновых кислот и увеличенного поглощения кислорода. В результате ускоряются практически все стадии биосинтеза гормонов щитовидной железы.

Под влиянием тиреотропина активируется работа йодного насоса, усиливаются процессы йодирования тирозина. Кроме того, увеличивается активность протеаз, расщепляющих тиреоглобулин, что способствует высвобождению активного тироксина и трийодтиронина в кровь. Выработка тиреотропина регулируется тиреолиберином гипоталамуса. Гонадотропные гормоны, или гонадотропины. В аденогипофизе вырабатывается 2 гонадотропина - фолликулостимулирующий ФСГ и лютеинизирующий ЛГУ . ФСГ действует на фолликулы яичников, ускоряя их созревание и подготовку к овуляции.

Под влиянием ЛГ происходит разрыв стенки фолликула овуляция и образуется желтое тело. ЛГ стимулирует выработку прогестерона в желтом теле. Оба гормона влияют также на мужские половые железы. ЛГ действует на яички, ускоряя выработку тестостерона в интерстициальных клетках - гландулоцитах клетки Лейдига. ФСГ действует на клетки семенных канальцев, усиливая в них процессы сперматогенеза. Регуляция секреции гонадотропинов осуществляется гипоталамическим гонадолиберином.

Существенное значение имеет также механизм отрицательной обратной связи - секреция обоих гормонов тормозится при повышенном содержании эстрогенов и прогестерона в крови выработка ЛГ уменьшается при увеличении продукции тестостерона. Соматотропный гормон, или соматотропин. Является гормоном, специфическое действие которого проявляется в усилении процессов роста и физического развития. Органами-мишенями для него являются кости, а также образования, богатые соединительной тканью мышцы, связки, сухожилия, внутренние органы.

Стимуляция процессов роста осуществляется за счет анаболического действия соматотропина. Последнее проявляется в усилении транспорта аминокислот в клетку, ускорении процессов биосинтеза белка и нуклеиновых кислот. Одновременно происходит торможение реакций, связанных с распадом белка. Вероятной причиной этого эффекта является наблюдающаяся под действием соматотропина усиленная мобилизация жира из жировых депо с последующим использованием жирных кислот в качестве основного источника энергии.

В связи с этим определенное количество белка сберегается от энергетических трат, поэтому скорость катаболизма белков снижается. Поскольку в этой ситуации процессы синтеза белка преобладают над процессами его распада, в организме происходит задержка азота положительный азотистый баланс. Благодаря анаболическому действию соматотропин стимулирует активность остеобластов и способствует интенсивному образованию белковой матрицы кости.

Кроме того, усиливаются также процессы минерализации костной ткани, в результате чего в организме происходит задержка кальция и фосфора. Несмотря на то, что в организме соматотропин активно стимулирует образование костной и хрящевой ткани, при введении данного гормона в изолированную культуру клеток заметного усиления роста последних обычно не наблюдается. В связи с этим возникло пред положение, что стимуляция процессов роста, наблюдаемая в условиях целостного организма, не является результатом прямого действия этого гормона.

Скорее всего под действием соматотропина происходит образование определенных посредников, влияние которых и приводит к анаболическому эффекту. Данные посредники получили название соматомедины. К настоящему времени идентифицировано по крайней мере 4 различных соматомедина. Все они по своей химической структуре являются белками, образование которых происходит в печени под влиянием соматотропина. Показано, что нарушение синтеза соматомединов может приводить к задержке роста и физического развития, хотя концентрация соматотропина в плазме крови при этом может оставаться нормальной или даже повышенной.

Влияние соматомединов на углеводный обмен соответствует эффектам, наблюдаемым при введении инсулина, по этому их называют также инсулиноподобные факторы роста. Соматотропин обладает выраженным действием на углеводный. обмен. Под влиянием данного гормона увеличивается содержание глюкозы в плазме крови. Механизм данного эффекта имеет несколько объяснений. Прежде всего тормозится использование глюкозы на энергетические траты, поскольку, как указывалось выше, основным источником энергии в данных условиях являются жирные кислоты.

Кроме того, гормон роста тормозит утилизацию глюкозы в тканях и снижает их чувствительность к действию инсулина. Под влиянием соматотропина увеличивается также активность фермента инсулиназы. Этот гормон обладает диабетогенным эффектом. Наблюдаемая при его введении гипергликемия является стимулом для выработки инсулина в-клетками поджелудочной железы.

Выработка инсулина увеличивается также и за счет прямого стимулирующего влияния соматотропина на в-клетки. В результате может произойти истощение их секреторной функции, которое в сочетании с повышенной активностью инсулиназы приводит к развитию так называемого гипофизарного диабета. Секреция гормона роста регулируется соматолиберином и соматостатином, которые вырабатываются в гипоталамусе. Отмечено усиление выработки соматотропина при стрессорных воздействиях, истощении запасов белка в организме.

Увеличение секреции происходит также при сниженном содержании глюкозы и жирных кислот в плазме крови. Пролактин. Эффекты этого гормона заключаются в следующем 1 усиливаются пролиферативные процессы в молочных железах, и ускоряется их рост 2 усиливаются процессы образования и выделения молока. Секреция пролактина возрастает во время беременности и стимулируется рефлекторно при кормлении грудью. Благодаря специфическому действию на молочную железу пролактин называют маммотропным гормоном 3 увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока.

В этом отношении он является синергистом альдостерона 4 стимулируются образование желтого тела и выработка им прогестерона. Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина. Гормоны нейрогипофиза. Антидиуретический гормон АДГ . В общем виде действие АДГ сводится к двум основным эффектам 1 стимулируется реабсорбция воды в дистальных канальцах почек.

В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плотность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. Под действием АДГ происходит активация фермента аденилатциклазы, локализующегося на поверхности базолатеральной обращенной к интерстицию мембраны клеток эпителия почечных канальцев.

Активация аденилатциклазы приводит к накоплению в цитоплазме этих клеток цАМФ. Последний диффундирует в область апикальной обращенной в просвет почечного канальца мембраны и стимулирует образование в цитоплазме белковых везикул, которые затем включаются в структуру апикальной мембраны и образуют в ней каналы, высокопроницаемые для воды. В результате вода из просвета почечных канальцев поступает в цитоплазму клеток эпителия канальцев, перемещается к базолатеральной мембране и, проникая через нее, попадает в интерстициальную ткань.

После разрушения АДГ белковые везикулы элиминируются из структуры апикальной мембраны. В результате этого последняя становится непроницаемой для воды 2 в больших дозах АДГ вызывает сужение артериол, что приводит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем, что введение АДГ приводит к повышению АД, этот гормон получил также название вазопрессин. Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика.

С другой стороны, развитие вазоконстрикции может иметь существенное адаптивное значение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ. Основная часть АДГ синтезируется в супраоптическом ядре гипоталамуса примерно 5 6 от общего количества, меньшая часть - в паравентрикулярном ядре. Секреция этого гормона усиливается при повышении осмотического давления крови.

Последнее можно продемонстрировать путем введения гипертонического раствора в сосуды, питающие гипоталамус. В этом случае происходит раздражение осморецепторов, что приводит к увеличению выработки гормона в супраоптическом и паравентрикулярном ядрах и повышенной его секреции из задней доли гипофиза в кровь.

Важным стимулом для регуляции секреции АДГ является также изменение объема циркулирующей крови. Показано, что при снижении последнего на 15-20 количество образующегося АДГ может увеличиваться в несколько десятков раз. В этом случае интенсивность секреции гормона меняется в зависимости от характера информации, поступающей в гипоталамус от волюморецепторов, реагирующих на растяжение кровью и локализующихся в правом предсердии, и барорецепторов, расположенных в аортальной и синокаротидной зонах, а также в легочной артерии.

Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения diabetes insipidus, основными проявлениями которого являются сильная жажда полидипсия и потеря большого количества жидкости с выделяемой мочой полиурия. Наблюдается учащенное мочеиспускание поллакиурия, в результате которого больной за сутки выделяет до 10-20 л мочи низкой относительной плотности. Симптомы этого заболевания проходят при введении синтетического вазопрессина или препаратов, приготовленных из задней доли гипофиза животных.

Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях 1 окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схватки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное протекание родового акта отсюда произошло и его название - от лат. oxy - сильный, tokos - роды. Адекватное проявление этого эффекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину 2 окситоцин принимает участие в регуляции процессов лактации.

Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока. Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскармливания. 3.3 Эпифиз. ЭПИФИЗ шишковидная, или пинеальная, железа, небольшое образование, расположенное у позвоночных под кожей головы или в глубине мозга функционирует либо в качестве воспринимающего свет органа либо как железа внутренней секреции, активность которой зависит от освещенности.

У некоторых видов позвоночных обе функции совмещены. У человека это образование по форме напоминает сосновую шишку, откуда и получило свое название греч. epiphysis - шишка, нарост. Эпифиз развивается в эмбриогенезе из свода эпиталамуса задней части диэнцефалона переднего мозга.

У низших позвоночных, например у миног, могут развиваться две аналогичных структуры. Одна, располагающаяся с правой стороны мозга, носит название пинеальной, а вторая, слева, парапинеальной железы. Пинеальная железа присутствует у всех позвоночных, за исключением крокодилов и некоторых млекопитающих, например муравьедов и броненосцев.

Парапинеальная железа в виде зрелой структуры имеется лишь у отдельных групп позвоночных, таких, как миноги, http www.krugosvet.ru articles 02 1000232 1000232a1.htm ящерицы и лягушки. Функция. Там, где пинеальная и парапинеальная железы функционируют в качестве органа, воспринимающего свет, или третьего глаза, они способны различать лишь разную степень освещенности, а не зрительные образы. В этом качестве они могут определять некоторые формы поведения, например вертикальную миграцию глубоководных рыб в зависимости от смены дня и ночи. У земноводных пинеальная железа выполняет секреторную функцию она вырабатывает гормон мелатонин, который осветляет кожу этих животных, уменьшая занимаемую пигментом площадь в меланофорах пигментных клетках. Мелатонин обнаружен также у птиц и млекопитающих считается, что у них он обычно оказывает тормозящий эффект, в частности снижает секрецию гормонов гипофиза. У птиц и млекопитающих эпифиз играет роль нейроэндокринного преобразователя, отвечающего на нервные импульсы выработкой гормонов.

Так, попадающий в глаза свет стимулирует сетчатку, импульсы от которой по зрительным нервам поступают в симпатическую нервную систему и эпифиз эти нервные сигналы вызывают угнетение активности эпифизарного фермента, необходимого для синтеза мелатонина в результате продукция последнего прекращается.

Наоборот, в темноте мелатонин снова начинает вырабатываться. Таким образом, циклы света и темноты, или дня и ночи, влияют на секрецию мелатонина.

Возникающие ритмические изменения его уровня - высокий ночью и низкий в течение дня - определяют суточный, или циркадианный, биологический ритм у животных, включающий периодичность сна и колебания температуры тела. Кроме того, отвечая на изменения продолжительности ночи изменением количества секретируемого мелатонина, эпифиз влияет на сезонные реакции, такие как зимняя спячка, миграция, линька и размножение. У человека с деятельностью эпифиза связывают такие явления, как нарушение суточного ритма организма в связи с перелетом через несколько часовых поясов, расстройства сна и зимние депрессии.

– Конец работы –

Эта тема принадлежит разделу:

Влияние эпифиза и его гормонов на функционирование организма

На протяжении многих веков они безуспешно пытались обнаружить верховного главнокомандующего организмом. Того, кто управляет всеми жизненно важными функциями и согласует работу… Но при каждом короле, как правило, существует тайный советник, власть которого очень велика.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Управляющие эндокринные железы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Часть I. Общая характеристика эндокринной системы
Часть I. Общая характеристика эндокринной системы. Глава 1. Гормоны1.1 Что такое гормон. Эндокринный орган отличается тем, что выделяет вещество, необходимое для регуляции клеточной активности каки

Классификация гормонов
Классификация гормонов. Все гормоны делятся на 1. Стероидные гормоны - производятся из холестерина в коре надпочечников, в половых железах. 2. Полипептидные гормоны - белковые гормоны инсулин, прол

Транспорт гормонов
Транспорт гормонов. Гормоны, попав в кровоток, должны поступать к соответствующим органам-мишеням. Транспорт высокомолекулярных белковых гормонов изучен мало из-за отсутствия точных данных о молеку

Сложность устройства Эпифиза
Сложность устройства Эпифиза. Эмбриогенез. Эпифиз человека очень мал, его величина варьируется от 50 до 200 мг, но кровоток в нём чрезвычайно интенсивен, что косвенно свидетельствует о важно

Гистология
Гистология. Гистологически различают паренхиму и соединительнотканную строму. Гистологическое строение эпифиза новорожденных отличается от его строения у взрослого. Ядра клеток имеют обычно

История исследований
История исследований. Функции этой железы оставались непонятными многие-многие годы. Кое-кто расценивал железу как рудиментарный глаз, ранее предназначавшийся для того, чтобы человек мог оберегать

Физиологические функции серотонина
Физиологические функции серотонина. Серотонин играет роль нейромедиатора в ЦНС. Большое количество серотонинергических нейронов найдено в лимбической системе, в гипоталамусе, в триггерной зоне и мн

Синтез и метаболизм мелатонина
Синтез и метаболизм мелатонина. Эпифиз продуцирует в основном индол-N-ацетил-5-метокситриптамин мелатонин. В отличие от своего предшественника серотонина это вещество синтезируется, исключительно в

Регуляция синтеза мелатонина
Регуляция синтеза мелатонина. Активность эпифиза зависит от периодичности освещения. На свету синтетические и секреторные процессы в нём ингибируются, а в темноте усиливаются. Световые импул

Мелатонин в организме
Мелатонин в организме. Кроме неясной в отношении истинной природы гормона гормонов шишковидной железы, существуют разногласия и в вопросе о путях его поступления в организм в кровь или в цереброспи

Влияние эпифиза на репродуктивную функцию
Влияние эпифиза на репродуктивную функцию. Предположение о возможности секреторной роли эпифиза человека впервые было высказано исходя из его связи с функцией гонад. Невропатолог О. М

Влияние эпифиза на функции гипофиза
Влияние эпифиза на функции гипофиза. В экспериментах на животных установлено, что эпифизарная регуляция репродуктивной функции осуществляется за счёт влияния шишковидной железы на гипоталамо

Влияние эпифиза на функции щитовидной железы
Влияние эпифиза на функции щитовидной железы. Влияние эпифиза и его гормонов на другие тропные функции гипофиза менее изучено. Изменение активности периферических эндокринных желез может воз

Влияние эпифиза на функции надпочечников
Влияние эпифиза на функции надпочечников. Подсадка эпифиза к надпочечникам, не влияя на состояние пучковой и сетчатой зон коры, почти вдвое увеличивала размеры клубочковой зоны, что свидетельствует

Влияние эпифиза на функции околощитовидных желёз
Влияние эпифиза на функции околощитовидных желёз. Имеются сообщения о том, что удаление эпифиза снижает функциональную активность околощитовидных желез. Существуют и противоположные наблюден

Эпифиз и психика
Эпифиз и психика. Одна из функций эпифиза - регуляция ритмов в организме. Нарушения последних, например расстройства сна, сочетаются с психическими заболеваниями. Поэтому эпифиз привлекает в

Эпифиз и сон
Эпифиз и сон. В настоящее время участие, по крайней мере косвенное, эпифизарного мелатонина в сезонной и внутрисуточной ритмике, сне-бодрствовании, репродуктивном поведении, терморегуляции, иммунны

Эпифиз и канцерогенез
Эпифиз и канцерогенез. В литературе обсуждается возможная роль эпифиза в противоопухолевой резистентности организма. В 1929 г. Georgion отметил, что эпифизэктомия у животных тормозила туморогенез,

Ритмы вокруг нас
Ритмы вокруг нас. Мы без труда замечаем ритмические изменения, происходящие в окружающем нас мире весна, лето, осень и зима образуют привычный цикл солнце всходит каждый день, движется по небу и са

Типы ритмов
Типы ритмов. Золотистые водоросли демонстрируют суточный ритм, хотя их сутки и составляют 24,8 ч. Подобные ритмы называются циркадианными от латинских слов circa - около и dies - день или околосуто

Изучение ритмов у живых организмов кроме человека
Изучение ритмов у живых организмов кроме человека. Более 250 лет назад французский астроном Жан-Жак д Орту де Меран, заметив, что цветок гелиотропа раскрывается днем и закрывается ночью, решил пров

Роль средовых сигналов
Роль средовых сигналов. Наследственность, которая заставляет пеночек-весничек готовиться к перелету, а золотистого суслика приблизительно в то же самое время года - к спячке, без сомнения, отражает

Циркадианные ритмы у человека
Циркадианные ритмы у человека. Ритмы у человека. Всем нам хорошо известен один суточный ритм - наш собственный цикл сна и бодрствования. На самом деле человеческому организму свойственно более 100

Сон и бодрствование
Сон и бодрствование. Сон - это специфическое состояние нервной системы с характерными особенностями и циклами мозговой деятельности. Человек засыпает не постепенно, а сразу - переход от сост

Когда сдвигаются фазы ритма
Когда сдвигаются фазы ритма. В длительных экспериментах с испытуемыми, живущими в пещере, при свободнотекущем ритме сутки у них значительно удлинялись по сравнению с обычными 24-часовыми, и это дей

Ультрадианные ритмы у человека
Ультрадианные ритмы у человека. Некоторые гормоны, такие как лютеинизирующий и фолликулостимулирующий, выделяются в кровяное русло с ультрадианной периодичностью. С помощью тщательных методо

Продолжительные ритмы
Продолжительные ритмы. Более продолжительные циклы обычно труднее охарактеризовать и изучить, нежели те, период которых равен суткам или меньше их. У многих животных сезонные изменения в выработке

Репродуктивный цикл у женщины
Репродуктивный цикл у женщины. Продолжительность женского репродуктивного цикла составляет около 28 дней. Каждый цикл начинается с того, что некоторые нейроны в преоптической области гипоталамуса с

Пейсмейкеры мозга млекопитающих - супрахиазменные ядра
Пейсмейкеры мозга млекопитающих - супрахиазменные ядра. В конце 60-х годов физиолог Курт Рихтер провел ряд экспериментов на крысах, пытаясь найти участки мозга, ответственные за ритмичность.

Другие пейсмейкеры
Другие пейсмейкеры. Хотя супрахиазменные ядра определенно играют важнейшую роль в регулировании циркадианных временных систем, имеются данные о существовании также и других ритмоводителей у млекопи

Ритмы и психические нарушения
Ритмы и психические нарушения. Новые данные о биологических ритмах наводят на мысль, что десинхронизация может играть некоторую роль в возникновении психических расстройств. Наиболее полно и

Функции биологических часов
Функции биологических часов. Биологические часы, о которых мы говорили, выполняют ту же функцию, что и любые другие часы они измеряют время. Хотя точное число и размещение этих хронометров в нашем

Интригующие факты
Интригующие факты. В журнале Наука и жизнь 11.02.2001 была опубликована статья под названием Исцеляющий театр. Начиналась она с сообщения весьма интригующих фактов. В американской тюрьме Син

Эпифиз - контролер воображения
Эпифиз - контролер воображения. Глядя на выше обозначенную проблему феномена воображения, нельзя не задаться вопросом чисто физиологической направленности какой орган ответственен за функционирован

Связь серотонина и восприятия
Связь серотонина и восприятия. Имеется не до конца объясненная связь между серотонином и мигренью, которую тоже следует рассмотреть немного подробнее, ибо и она таит в себе много интересного.

Опыты по изучению галлюцинаций
Опыты по изучению галлюцинаций. В начале 70-х годов пермский психиатр Геннадий Крохалев поставил серию экспериментов, целью которых была попытка заснять галлюцинации. Этой идеей он заинтерес

Шизофрения
Шизофрения. После этого облегчающего душу отступления хотелось бы рассмотреть ещё один интересный аспект воздействия некоторых химических веществ на сознание человека. Если до сего момента р

Эпифиз и сокрытые функции организма
Эпифиз и сокрытые функции организма. Возвращаясь к теме мигрени и серотонина, о которой уже упоминалось, следует отметить, что болезнь эта распределена среди людей отнюдь не равномерно. Женщ

Наблюдение детей с необычными психическими способностями
Наблюдение детей с необычными психическими способностями. Исследователи аномальных явлений, сверяясь со своей статистикой, утверждают, что за последние два десятилетия детей с необычными психически

Влияние NAT
Влияние NAT. на функцию Эпифиза. Фермент NAT2 присутствует в клетках центральной нервной системы, печени, кишечника, эндокринных органов человека. Но в последние годы учеными установлено, чт

Эпоха Второго храма
Эпоха Второго храма. Эпоха получила свое название в честь восстановленного в 516 году до н.э. прежде разрушенного Первого храма. Переломным этапом в этот период было прибытие в страну новой группы

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги