рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Строение зуба

Работа сделанна в 2006 году

Строение зуба - раздел Медицина, - 2006 год - Изучение защитного действия зубных паст Строение Зуба. Эмаль (Enamelum) - Это Ткань, Покрывающая Коронку Зуба, Самая ...

Строение зуба. Эмаль (enamelum) - это ткань, покрывающая коронку зуба, самая твердая ткань организма.

На жевательной поверхности ее толщина 1,5 - 1,7 мм. На боковых поверхностях эмаль значительно тоньше и сходит на нет к шейке, к месту соединения с цементом корня. Она на 98% состоит из неорганических веществ. Основными компонентами кристаллов эмали являются кальций и фосфор. Дентин (dentinum) - составляет основную массу зуба, менее обызвествлен, чем эмаль. В нем содержится 70% неорганических веществ и 30% органических веществ и воды. Основу неорганического вещества составляют фосфат кальция (гидроксиапатит), карбонат кальция и фторид кальция.

В дентине имеются канальцы, содержащие окончания чувствительных волокон. Цемент (cementum) - это прослойка ткани, покрывающая корень зуба и состоящая из 68% неорганических и 32% органических веществ. По химическому составу цемент напоминает костную ткань. В отличие от кости цемент не имеет кровеносных сосудов. Пульпа (pulpa) является самой чувствительной тканью зуба, состоящей из сплетения нервных волокон и кровеносных сосудов.

Они проникают в зуб через отверстие, которое имеется на верхушке каждого корня. Воспаление пульпы носит название пульпит. Между корнем зуба и стенкой лунки имеется щель, в которой располагаются связки, обеспечивающие фиксацию корня и распределяющие жевательное давление, а также большое количество сосудов и нервов. Это щелевидное пространство носит название периодонта. Воспаление периодонта - периодонтит.

Весь комплекс тканей, удерживающих зуб - корень. лунка, периодонт, десна - носит название пародонта. Воспаление пародонта - пародонтит. (Не путать с периодонтитом и пародонтозом ). С химической точки зрения, эмаль зрелого зуба состоит из неорганического (около 95% по весу), органического (1-1,5%) компонента и воды (4%). Органический компонент представлен преимущественно коллагеновыми белками, которые (вместе с другими органическими компонентами – углеводами) образуют органическую матрицу – коллагеновые волокна.

Эти и другие белки, кроме каркасной, выполняют защитную и регуляторную функцию в процессе реминерализации. Неорганическим компонентом является фосфат кальция в виде апатита Ca5(PO4)3X, где Х – это гидроксильная группа (преимущественно, т.н. гидроксиапатит), фтор, хлор. Биологически образованные фосфаты кальция обычно называют "биологическим апатитом". Состав биологического апатита на самом деле более сложен. Часть ионов кальция замещена ионами магния, стронция, натрия, калия, ионы фосфата частично замещены ионами карбоната, а в качестве Х-ионов присутствуют не только вышеперечисленные, но и карбонат-ионы. Более того, для компенсации электрических зарядов образуются т.н. ионные вакансии, что в целом приводит к нестехиометрическому (переменному) составу биологического апатита.

Именно поэтому невозможно говорить о точном химическом составе биологического апатита. Каждый кристалл апатита имеет гидратную оболочку (слой молекул воды, т.н. эмалевая лимфа) и содержит внутрикристаллическую воду. Молекулы воды играют важную роль в ионном обмене при деминерализации и реминерализации эмали.

Существенное отличие зубной эмали от обычной костной ткани состоит в том, что эмаль не восстанавливается (в восстановлении обычной костной ткани участвуют специальные клетки – остеокласты и остеобласты). По данным, полученным в последнее время, ультраструктура зубной эмали представляет собой пучки белковых, в основном коллагеновых, волокон, на которых расположены кристаллы биологического апатита (т.н. кристаллические волокна). Кристаллические волокна изогнуты в толще эмали и выпрямлены в ее поверхностном слое. Данные образования обычно называют эмалевыми призмами, что не соответствует их геометрической форме.

Компактность и прочность эмали является следствием перехода тесно перевитых между собой кристаллических волокон из одного ряда в другой. В эмали выделяют 3 зоны: внутреннюю (отдельный тонкий слой, примыкающий к дентину), среднюю и поверхностную (самый плотный слой жевательной поверхности). Все 3 слоя обладают микропористыми свойствами.

Состав внутренней части зуба (дентина) также представлен биологическим апатитом (70-72%, преимущественно гидроксиапатит), органическим компонентом (20%, преимущественно коллаген, но есть и другие белки и углеводы; играют важную регуляторную роль в минеральном обмене) и водой (10%). Дентин составляет основную массу зуба и по структуре напоминает грубоволокнистую кость. В отличие от эмали, дентин пронизан большим количеством дентинных канальцев, заполненных дентинной жидкостью, веществом пульпы, клеточными отростками. Цемент корня имеет наименьшее количество неорганического компонента (50%, в основном фосфаты и карбонат кальция) и пронизан коллагеновыми волокнами и клеточными элементами.

Эмаль зуба – это полупроницаемая мембрана, внутренние области которой доступны для многих неорганических ионов. Степень проницаемости зависит от размера конкретного иона и его способности связываться с кристаллической решеткой биологического апатита.

Несмотря на чрезвычайно низкую растворимость апатита, эмаль зуба участвует в равновесном процессе деминерализации (выход ионов кальция, фосфата и других в слюну) и реминерализации (обратная реакция). Источником реминерализации служат неорганические ионы кальция слюны. Положение равновесия зависит от большого количества факторов (внутренних и внешних) и их изменение может привести к смещению равновесия в сторону обеднения (по сравнению с нормой) эмали неорганическими компонентами.

Реакция эмали, как части организма в целом, на действие таких факторов является ее деминерализация. Частным примером может служить резкое увеличение кислотности среды под зубными бляшками, локальная деминерализация и развитие кариеса на стадии белого пятна. В общем случае под воздействием неблагоприятных факторов (например, развитием внутренних болезней) деминерализация приводит к микропористости эмали и развитию гиперестезии.

Минеральн. вещ. Органич. вещ. Вода Эмаль 95% 1 – 1,5% 4% Дентин 70% 20% 10% Цемент 50% 27% 13% Кость 45% 30% 25% Эти кристаллы имеют гексогенальную форму. Минеральные компоненты эмали Они представлены в виде соединений, имеющих кристаллическую решетку A (BO) K A = Ca, Ba, кадмий, стронций В = РО, Si, As, CO. K = OH, Br, J, Cl. 1) гидроксиапатит – Са (РО) (ОН) в эмали зуба 75% ГАП – самый распространенный в минерализованных тканях 2) карбонатный апатит – КАП – 19% Са (РО) СО – мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается 3) хлорапатит Са (РО) Сl 4,4% мягкий 4) стронцевый апатит (САП) Са Sr (PO) - 0,9% не распространен в минеральных тканях и распространен в неживой природе.

Мин. в-ва 1 – 2% в неапатитной форме, в виде фосфорнокислого Са, дикальциферата, ортокальцифосфата. Соотношение Са / Р – 1,67 соответствует идеальному соотношению, но ионы Са могут замещаться на близкие по свойству химические элементы Ва, Сr, Mg. При этом снижается соотношение Са к Р, оно уменьшается до 1,33%, изменяются свойства этого апатита, уменьшается резистентность эмали к неблагоприятным условиям. В результате замещения гидроксильных групп на фтор, образуется фторапатит, который превосходит и по прочности и по кислотоустойчивости ГАП. Са (РО) (ОН) + F = Ca (PO) FOH гидроксифторапатит Са (РО) (ОН) + 2F = Ca (PO) F фторапатит Са (РО) (ОН) + 20F = 10CaF + 6PO + 2OH фторид Са. СаF - он прочный, твердый, легко выщелачивается. Если рн сдвигается в щелочную сторону, происходит разрушение эмали зуба, крапчатость эмали, флюороз.

Стронцевый апатит – в костях и зубах животных и людей, живущих в регионах с повышенным содержанием радиоактивного стронция, они обладают повышенной хрупкостью.

Кости и зубы становятся ломкими, развивается стронцевый рахит, беспричинный, множественный перелом костей. В отличие от обычного рахита, стронцевый не лечится витамином Д. Особенности строения кристалла. Наиболее типичной является гексогенальная форма ГАП, но может быть кристаллы с палочковидной, игольчатой, ромбовидной.

Все они упорядочены, определенной формы, имеют упорядоченные эмаль. призмы – явл-ся структурной единицей эмали. 4 структуры: кристалл состоит из элементарных единиц или ячеек, таких ячеек может быть до 2 тысяч. Мол. масса = 1000. Ячейка – это структура 1 порядка, сам кристалл имеет Mr = 2 000 000, он имеет 2 000 ячеек. Кристалл – структура 2 порядка. Эмалевые призмы являются структурой 3 порядка. В свою очередь, эм. призмы собраны в пучки, это структура 4 порядка, вокруг каждого кристалла находится гидратная оболочка, любое приникновение веществ на поверхность или внутрь кристалла связано в этой гидратной оболочкой.

Она представляет собой слой воды, связанной с кристаллом, в котором происходит ионный обмен, он обеспечивает постоянство состава эмали, называется эмалевой лимфой. Вода внутрикристаллическая, от нее зависят физиологические свойства эмали и некоторые химические свойства, растворимость, проницаемость.

Вид: вода, связанная с белками эмали. В структуре ГАП соотношение Са / Р – 1,67. Но встречаются ГАП, в которых это соотношение колеблется от 1,33 до 2. Ионы Са в ГАПе могут быть замещены на близкие по свойствам в Са другие хим. эл-ты. Это Ba, Mg, Sr, реже Na, K, Mg, Zn, ион H O. Такие замещения называются изоморфными, в тезультате соотношение Са / Р падает. Таким образом, образуется из ГАП – ГФА. Фосфаты могут заместиться на ион РО НРО цитрат. Гидрокситы замещаются на Cl, Br, F, J. Такие изоморфные зам-я приводят к тому, что изменяется и св-во апатитов – резистентность эмали к кислотам и к кариесу падает.

Существуют другие причины изменения состава ГАП, наличие вакантных мест в кристалл. решетке, которые должны быть замещены с одним из ионов, возникают вакантные места чаще всего при действии кислот, уже в сформированном присталле ГАП, образование вакантных мест приводит к изменению св-в эмали, проницаемости, раствопимости, адсорб. св-ва. Нарушается равновесие между процессом де- и реминерализации.

Возникают оптим. усл-я для хим. реакций на поверхности эмали. Физико-химические св-ва кристалла апатита Одним из важнейших вс-в кристалла явл-ся заряд. Если в кристалле ГАП 10 ост. Са, тогда считают 2 х 10 = 3 х 6 + 1 х 2 = 20 + 20 = 0. ГАП электонейтрален, если в структуре ГАП содер-ся 8 ионов Са – Са (РО) , то 2 х 8 20 = 16 < 20, кристалл приобретает отриц. заряд. Он может и положительно заряжаться. Такие кристаллы становятся неустойчивыми. Они обладают реакционной способностью, возникает поверхностная электрохимич. неуравновешенность. ионы наход-ся в гидратной оболочке.

Могут нейтрализовать заряд на поверхности апатита и такой кристалл снова приобретает устойчивость. Стадии проникновения в-в в кристал. ГАП 3 стадии 1) ионный обмен между раствором, который омывает кристалл – это слюна и зубдесневая жидкость с его гдратной оболочкой. В нее поступают ионы, нейтрализующие заряд кристалла Са, Sr, Co, PО, цитрат. Одни ионы могут накапливаться и также легко покидать, не проникая внутрь кристалла – это ионы К и Cl, другие ионы проникают в поверхностный слой кристалла – это ионы Na и F. Стадия происходит быстро в течение неск. минут. 2) это ионный обмен между гидратной оболочкой и поверхностью кристалла, происходит отрыв иона от пов-сти кристалла и замена их на др. ионы из гидратной оболочки.

В результате уменьшается или нейтрал-ся поверхн. заряд кристалла и он приобретает устойчивость. Более длительная, чем 1 стадия.

В течение неск. часов. Проникают Ca, F, Co, Sr, Na, P. 3) Проникновение ионов с поверхности внутрь кристалла – называется внутрикристаллический обмен, происходит очень медленно и по мере проникновения иона скорость этой стадии замедляется. Такой способностью обладают ионы Ра, F, Са, Sr. Наличие вакантных мест в кристалл. решетке явл-ся важным фактором в активации изоморфных замещений внутри кристалла. Проникновение ионов в кристалл зависит от R иона и уровня Е, которой он обладает, поэтому легче проникают ионы Н, и близкие по строению к иону Н. Стадия протекает дни, недели, месяцы.

Состав кристалла ГАП и свойства их постоянно изменяются и зависят от ионного состава жидкости, которая омывает кристалл и состава гидратной оболочки. Эти св-ва кристаллов позволяют целенаправленно изменять состав твердых тканей зуба, под действием реминерализующих растворов с целью профилактики или лечения кариеса. Органические в-ва эмали Доля орг. в-в 1 – 1,5%. В незрелой эмали до 20%. Орг. в-ва эмали влияют на биохимические и физические процессы, происходящие в эмали зуба. Орг. в-ва нах-ся между кристаллами апатита в виде пучков, пластинок или спирали.

Осн. представители – белки, углеводы, липиды, озотсодержащие в-ва (мочевина, пептиды, цикл. АМФ, цикл. аминокислоты) . Белки и углеводы входят в состав органич. матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию. 1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидоподобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст. белого или пигментированного пятна кол-во этих белков > в 4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес.

У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали.

КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали. 2. Б. растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер. компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%. 3. Своб. пептиды и отд. аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1% 1) ф-я защитная.

Белки окружают кристалл. Предупреждают процесс деминерализации 2) белки инициируют минерализацию. Активно участвуют в этом процессе 3) обеспечивают минер. обмен в эмали и др. твердых тканях зуба. Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды. Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами. Дентин уступает по твердости.

Наиболее важными элементами дентина являются ионы Са, РО, Со, Мg, F. Mg сод-ся в 3 раза больше, чем в эмали. Концентрация Na и Cl возрастает во внутренних слоях дентина. Основное в-во дентина состоит из ГАП. Но в отличие от эмали, дентин пронизан большим количеством дентинных канальцев. Болевые ощущения передаются по нервным рецепторам. В дентинных канальцах нах-ся отростки клеток одонтобластов, пульпа и дентинная жидкость.

Дентин составляет основную массу зуба, но явл. менее минерализов. в-вом, чем эмаль, по строению напоминает грубоволокнистую кость, но более твердый. Органич. в-ва Белки, липиды, углеводы, …. Белковый матрикс дентина - 20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин…мального происхождения, сод. глюкозаминогликогены (……. атинсульфат) , галактозу, гексазамиты и гелиуроновая кислоты.

Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец. белкам отн-ся амелогенины, энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен заледленный обмен мин. компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса. Цемент зуба Покрывает тонким слоем весь зуб. Первичный цемент образован минеральным в-вом, в котором в разных направлениях проходят коллагеновые волокна, клеточные элементы – цементобласты.

Цемент зрелого зуба мало обновляется. Состав: минер. компоненты в основном представлены карбонатами и фосфатами Са. Цемент не имеет как эмаль и дентин, собственных кровеносных сосудов. В верхушке зуба – клеточный цемент, основная часть – бесклеточный цемент. Клеточный напоминает кость, а бесклеточный состоит из колл. волокон и аморфного в-ва, склеивающего эти волокна. Фтор является необходимым компонентом зубов. В состав здоровых зубов входит до 0,02% фтора, причем основная часть содержится в эмали (фторапатит). Фтор, необходимый для построения и сохранения нормальных свойств эмали, поступает в организм в основном с питьевой водой.

По многочисленным данным, увеличение концентрации ионов фтора в слюне приводит к увеличению реминерализации эмали. Если содержание фтора в воде недостаточное (менее 0,00005%), прочность эмали резко снижается. Но постоянные высокие концентрации ионов фтора в воде приводят к развитию флюороза (почернению и выпадению зубов).

– Конец работы –

Эта тема принадлежит разделу:

Изучение защитного действия зубных паст

При весе человека 60-70 кг общее количество кальция в его организме составляет 1,0-1,2 кг. При этом 99% кальция приходиться на кости и зубы, 1%… Как тот, так и другой кальций выполняют многие важные физиологические… Содержащийся здесь кальций находится в состоянии динамического равновесия с кальцием в кровеносной системе и служит в…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Строение зуба

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Болезни зубов
Болезни зубов. Чтобы сберечь зубы, нужно правильно ухаживать за ними. Эту прописную истину каждый знает с детских лет, но тем не менее, очень сложно найти человека, ни разу в жизни не посетившего с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги