рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Универсальный регулятор

Универсальный регулятор - раздел Медицина, Влияние гамма-аминомасляной кислоты на процессы, протекающие в организме Универсальный Регулятор. Впервые Гамма-Аминомасляную Кислоту Обнаружили В Моз...

Универсальный регулятор. Впервые гамма-аминомасляную кислоту обнаружили в мозге Е. Робертс и С. Френкель в 1950 году. Но ее главное свойство открыл в 1963 году английский ученый К. Крневич.

Он изучал электрические потенциалы, которые возникают в соответствующих участках коры головного мозга при раздражении кожи, а также и любых других органов чувств. Исследователь подвел к нейрону, воспроизводящему такие электрические потенциалы, две микропипетки. Одну из них ввел в тело нейрона и через нее регистрировал возникновение электрического потенциала - возбуждение, а другую оставил снаружи и заполнил раствором ГАМК в ничтожной концентрации 10-14М. Когда аминокислота поступала из пипетки к нейрону, она полностью подавляла импульсы в чувствительных клетках коры головного мозга.

Чуть позднее японские исследователи подтвердили эти результаты. Опыты были воспроизведены и автором статьи. Стало ясно, что ГАМК может тормозить любые электрические потенциалы как в коре, так и в других участках мозга. Это вещество вырабатывается и выделяется именно в тех областях мозга, которые ответственны за торможение нервной активности.

Считается, что ГАМК обеспечивает передачу тормозящих импульсов приблизительно в 30-50% синапсов клеток мозга. В головной мозг кошки (рис. 1), находящейся под наркозом, вводят электрод, к которому прикладывают фильтровальную бумажку, смоченную раствором ГАМК. После раздражения нерва на передней лапе записывают вызванные потенциалы на экране осциллографа. Амплитуда потенциала отражает число возбужденных нейронов и их способность к восприятию внешнего импульса. При воздействии физиологическим раствором потенциалы не изменяются (график вверху), при поступлении раствора ГАМК постепенно происходит торможение нервных клеток (график внизу). Рис. 1 Схема опыта, демонстрирующего тормозящее действие гамма аминомасляной кислоты на нервные клетки Аминокислота вырабатывается в цитоплазме нервной клетки, а с приходом импульса выделяется в синаптическую щель. Там специальные белки-рецепторы взаимодействуют с ГАМК таким образом, что в мембране клетки-исполнителя открываются поры (Рис.2). Через них внутрь клетки поступают ионы хлора, которые находятся в избытке в межклеточной жидкости.

Проникновение хлора в клетку и вызывает в ней состояние торможения.

Рис.2 Схема участия ГАМК в торможении импульсов нервных клеток В покое в протоплазме клеток преобладают отрицательные заряды, а на поверхности мембраны скапливаются положительные - клетка находится в состоянии умеренной деполяризации и готова к возбуждению. При воздействии активирующего медиатора происходит выравнивание зарядов по обе стороны мембраны - деполяризация, что ведет к возбуждению клетки.

Тормозной импульс вызывает выработку синаптических пузырьков, которые выходят в синаптическую щель и выбрасывают ГАМК. Молекулы ГАМК соединяются с рецепторами, каналы в мембране открываются, и ионы хлора выходят в протоплазму, увеличивая отрицательный заряд внутри клетки и разность потенциалов на мембране. В результате обычное возбуждение клетки становится невозможным и возникает состояние торможения.

Препарат пикротоксин препятствует этим процессам, воздействуя на каналы в мембране клетки-исполнителя. Было показано, что торможение может происходить либо вследствие влияния посторонних раздражителей на текущую деятельность (внешнее, безусловное торможение), либо вследствие обучения (внутреннее торможение). Внутреннее торможение возникает в структурах головного мозга при повторении любых раздражителей без биологически значимого подкрепления и выражается в исчезновении периферических реакций (вегетативных, секреторных, двигательных: автоматических и произвольных), ориентировочных либо условнорефлекторных, исходно вызываемых этими раздражителями.

Внутреннее торможение не тождественно утомлению. Оно имеет активную природу. В поведенческом плане природа внутреннего торможения как специфического нервного процесса проявляется в том, что в случае присоединения тормозного стимула к активирующему этот стимул снижает интенсивность условного рефлекса. Кроме того, заторможенные при повторении неподкрепляемого стимула реакции временно восстанавливаются при изменении условий опыта, в том числе при изменении интенсивности либо времени действия тормозного раздражителя.

Открытие школой Павлова специфического тормозного процесса, возникающего в результате обучения, является не менее фундаментальным достижением нейрофизиологии, чем выявление механизмов и закономерностей образования новых активных форм поведения. Именно внутреннее торможение обеспечивает возможность тончайшего приспособления животных и человека к постоянно меняющимся условиям внешней среды.

Оно определяет выбор наиболее адекватных форм поведения, затормаживая, ограничивая выход возбуждения на периферию, и не только на периферию, но и в сферу сознания, предотвращая тем самым осуществление бесчисленного множества реакций, не соответствующих данной ситуации, ненужных для текущего образа действий и мышления. Внутреннее торможение играет решающую роль в организации правильного социального поведения человека, в реализации самых разнообразных форм его деятельности, от элементарных бытовых навыков до высших форм творческой активности.

Согласно представлению И.П.Павлова, научная деятельность человека заключается в поиске, отборе и закреплении гипотез, соответствующих действительности, и в отбрасывании, затормаживании неправильных, ошибочных умозаключений. Но ее главное свойство открыл в 1963 году английский ученый К. Крневич. Он изучал электрические потенциалы, которые возникают в соответствующих участках коры головного мозга при раздражении кожи, а также и любых других органов чувств.

Исследователь подвел к нейрону, воспроизводящему такие электрические потенциалы, две микропипетки. Одну из них ввел в тело нейрона и через нее регистрировал возникновение электрического потенциала - возбуждение, а другую оставил снаружи и заполнил раствором ГАМК в ничтожной концентрации 10-14М. Когда аминокислота поступала из пипетки к нейрону, она полностью подавляла импульсы в чувствительных клетках коры головного мозга.

Чуть позднее японские исследователи подтвердили эти результаты. Опыты были воспроизведены и автором статьи. Стало ясно, что ГАМК может тормозить любые электрические потенциалы как в коре, так и в других участках мозга. Это вещество вырабатывается и выделяется именно в тех областях мозга, которые ответственны за торможение нервной активности. Считается, что ГАМК обеспечивает передачу тормозящих импульсов приблизительно в 30-50% синапсов клеток мозга.

Аминокислота вырабатывается в цитоплазме нервной клетки, а с приходом импульса выделяется в синаптическую щель. Там специальные белки-рецепторы взаимодействуют с ГАМК таким образом, что в мембране клетки-исполнителя открываются поры. Через них внутрь клетки поступают ионы хлора, которые находятся в избытке в межклеточной жидкости. Проникновение хлора в клетку и вызывает в ней состояние торможения. Рецепторы ГАМК расположены также и в сосудах, особенно много их в сосудах мозга. Ученые составили карты, на которых указано, в каких частях мозга ГАМК играет роль главного тормозного вещества.

Хотя концентрация этой кислоты в разных отделах мозга различна, найти ее можно практически везде. Когда же подсчитали общее число ее молекул, то оказалось, что мозг содержит ГАМК в значительно больших количествах, чем это требуется для торможения его активности. Зачем? Ведь природа не терпит излишеств. Исследователи предположили, что ГАМК выполняет в мозге и какие-то иные функции.

Действительно, вскоре было установлено, что она является обязательным участником многих процессов: влияет на транспорт и переработку глюкозы, на дыхание клеток, на образование в них запасов энергии, повышает устойчивость клеток (и мозга в целом) к кислородному голоданию, активизирует синтез белков. Эти функции нарушаются при некоторых психических и неврологических расстройствах, когда мозг испытывает нехватку аминокислоты. Рис.3 Схема порочного круга изменений в организме и головном мозге при старении, травмах и болезнях Длительное существование порочного круга ведет к возникновению неврозов, психозов и депрессии, нарушению сна, памяти и мышления.

Стрелки обозначают направление влияний одного состояния на другое и те звенья порочного круга, на которые воздействуют ноотропные средства Начался поиск лекарств, способных воздействовать на передачу нервных импульсов. При этом ученые столкнулись с удивительным фактом: некоторые растения уже миллионы лет тому назад научились синтезировать вещества, которые успешно воспроизводили или столь же успешно блокировали действие передатчиков нервных импульсов медиаторов.

Так, никотин и мускарин, содержащиеся в табаке и мухоморах, действуют так же, как ацетилхолин, а атропин, вырабатываемый красавкой (белладонной), устраняет его действие. Эфедрин из растения эфедра воспроизводит, а эрготоксин из маточных рожков спорыньи устраняет действие норадреналина. Стали искать такие растительные вещества, которые могли бы влиять и на работу ГАМК в нервных клетках.

Выяснилось, что некоторые алкалоиды «выключают» ГАМК. Эти вещества пытались использовать в качестве средств, активизирующих работу мозга, однако они слишком опасны, поскольку даже в очень малых дозах могут вызывать сильнейшие судороги. Не случайно в былые времена из этих растений готовили яды для стрел. Алкалоиды пикротоксин и бикукулин нашли другое применение: с их помощью исследователи установили, что система торможения, регулируемая ГАМК, противодействует столь же тотальной системе активации мозга, которая управляется другим медиатором - глютаминовой кислотой.

Если тормозная система ГАМК блокирована или нарушена, то активация мозга становится слишком сильной, и возникают судороги. Небольшое же снижение работы тормозной системы при недостатке ГАМК в организме ведет к бессоннице, беспокойству, тревоге. Восстановление содержания этого вещества, напротив, обеспечивает нормализацию сна, успокоение. 1.1

– Конец работы –

Эта тема принадлежит разделу:

Влияние гамма-аминомасляной кислоты на процессы, протекающие в организме

Поиск веществ, способных помочь мозгу в экстренных ситуациях, ведется фармакологами давно. Одной из важнейших удач было открытие гамма-аминомасляной кислоты,… Механизмы передачи и движения нервного импульса до конца не изучены и являются темой для споров в научном обществе.Но…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Универсальный регулятор

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Поиски лекарств
Поиски лекарств. Первое лекарство, которое активировало рецепторы - молекулы, воспринимающие ГАМК, и тем самым заставляло активно работать тормозную систему, была сама эта кислота в чистом виде. Пр

Ноотропил и другие лекарственные средства
Ноотропил и другие лекарственные средства. В начале 60-х годов бельгийские фармакологи получили соединение, которое представляло собой гамма-аминомасляную кислоту, свернутую в кольцо и снабженную н

Структура и химический состав Ивадала
Структура и химический состав Ивадала. Ивадал по своему химическому составу отличается от класса бензодиазепиновых (Рис. 4). Действующее вещество-золпидема тартрат-представляет собой кристаллически

Метаболиты ГАМК в организме
Метаболиты ГАМК в организме. ГОМК - это химическое соединение, похожее по структуре на тормозной неромедиатор ГАМК. Предполагается, что ГОМК выполняет нейромодулирующую функцию в ЦНС, оказывая влия

Предполагаемые механизмы действия: влияние на систему ГАМК
Предполагаемые механизмы действия: влияние на систему ГАМК. Точный механизм фармакологического действия ГОМК остается до конце не изученным. Однако, результаты многих исследований позволяют

Предполагаемые механизмы действия: влияние на систему дофамина
Предполагаемые механизмы действия: влияние на систему дофамина. ГОМК оказывает мощное тормозное влияние на дофаминергическую систему. В норме концентрация ГОМК в базальных ганглиях в 2-3 больше, че

Предполагаемые механизмы действия: опиоидные рецепторы
Предполагаемые механизмы действия: опиоидные рецепторы. ГОМК и морфин обладают сходными клиническим эффектами, включая эйфорию, угнетение дыхания, и потенциальную возможность развития зависимости.

Влияние на сон и гормоны роста
Влияние на сон и гормоны роста. Влияние ГОМК на сон хорошо известно. В течение первых двух часов после засыпания наблюдается повышение секреции гормона роста и удлинение четвертой стадии сна

Лечение наркотической зависимости
Лечение наркотической зависимости. В европейских странах обычной практикой является использование ГОМК для лечения наркотической зависимости. В Италии проводилось исследование по оценке эффе

Лечение бутиратных интоксикаций
Лечение бутиратных интоксикаций. Лечение интоксикации ГОМК включает меры по поддержанию жизни, поскольку большинство эффектов ГОМК (даже в комбинации с другими препаратами) нивелируются в течение н

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги