рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Порядок работы

Порядок работы - раздел Медицина, Лабораторная работа № 1 Изучение упругих и прочностных свойств тканей организма 1. Исследование Зависимости Стрелы Прогиба От Нагрузки. Образец Распол...

1. Исследование зависимости стрелы прогиба от нагрузки. Образец располагают на опорах так, чтобы он плотно касался призм. Хомут чашки для гирь устанавливают посредине образца. Вертикальный стержень индикатора перемещений приводят в соприкосновение с верхней поверхностью середины образца, устанавливая стрелку индикатора в нулевом положении. Постепенно, без толчков, нагружают образец, отмечая для каждого груза соответствующую стрелу прогиба. Определение стрелы прогиба нужно проводить только в области упругих деформаций. Поскольку наложение даже небольших нагрузок вызывает перемещения стрелки ин­дикатора длин не плавно, а рывками, то определение зависимости стрелы прогиба от нагрузки можно исследовать, если вместо грузов на чашку весов поставить сосуд, в который с помощью шланга с зажимом наливают малой струйкой воду. Сосуд заранее проградуирован в ньютонах. Останавливая зажимом движущийся поток воды на определенных делениях нагрузок, отмечают соответствующие значения стрелы прогиба. Результаты опыта заносят в таблицу.

 

 

Нагрузка (кг) 10-3 Кость Стрела прогиба Дюралюминий Стрела прогиба Сталь Стрела прогиба Дерево Стрела прогиба
                       
                       
                       
                       
                       

 

По найденным значениям стрелы прогиба и соответствую­щим нагрузкам строят график. Для этого по оси ординат откладывают нагрузку, а по оси абсцисс — стрелу прогиба. При правильно выполненном опыте график представляет прямую линию.

2. Определение модуля упругости кости и других материалов. В формулы (2) или (3) подставляют средние значе­ния размеров образца, вместо Р — сумму всех нагрузок, вме­сто f—сумму всех стрел прогиба, что равносильно нахожде­нию их средних значений, и вычисляют Е. Значения модулей упругости некоторых материалов приведены в табл. 8 приложений.

 

Pi=mg xi  
п/п
0.25   SXср=(SQR∑(Xi-Xср)2)∙ ∙1/n(n-1) ΔXсл=tα,п×∙ SXср  
0.5  
0.75  
1.0  
1.25  
  α  

 

 

Механические свойства твердых тел и биологических тканей

Характерным признаком твердого тела является способность сохранять форму. Твердые тела можно разделить на кристал­лические и аморфные

Кристаллические и аморфные тела. Полимеры и биополимеры

Отличительным признаком кристаллического состояния слу­жит анизотропия — зависимость физических свойств (механиче­ских, тепловых, электрических, оптических) от направления.

Причина анизотропии кристаллов заключается в упорядочен­ном расположении атомов или молекул, из которых они постро­ены, проявляющемся в правильной внешней огранке отдельных монокристаллов. Однако, как правило, кристаллические тела встречаются в виде поликристаллов — совокупности множеств сросшихся между собой, беспорядочно ориентированных отдельных маленьких кристалликов (кристаллиты). В этом случае ани­зотропия наблюдается в пределах кристаллитов.

Упорядоченность в расположении атомов или молекул крис­талла обусловлена тем, что они размещаются в узлах геометриче­ски правильных структур, образуя пространственную кристал­лическую решетку. В зависимости от природы частиц, находя­щихся в узлах, и характера сил взаимодействия различают четыре типа кристаллических решеток: ионные, атомные, ме­таллические и молекулярные.

В узлах кристаллической решетки ионного кристалла нахо­дятся ионы разных знаков. Силы взаимодействия между ними в основном кулоновские. Такой кристалл в целом рассматривается как одна молекула. Узлы решетки атомного кристалла заняты нейтральными атомами, между которыми действуют ковалент-ные связи. Во всех узлах металлической решетки расположены положительные ионы металлов. Между ними хаотически движут­ся электроны. Система ионов и электронов создает металличе­скую связь. В узлах кристаллической решетки молекулярного кристалла находятся ориентированные определенным образом молекулы, удерживаемые на своих местах силами межмолеку­лярного взаимодействия.

С энергетической точки зрения идеальный кристалл противо­положен идеальному газу. В идеальном газе абсолютное значение энергии взаимодействия между атомами много меньше kT — средней энергии хаотического теплового движения. Наоборот, в кристалле вследствие больших сил взаимодействия абсолютное значение энергии взаимодействия много больше kT. Поэтому теп­ловое движение в кристаллах не может разрушить связь между частицами, вследствие чего они совершают малые колебания око­ло положений равновесия.

Взаимодействие между частицами любого вида в кристалле выражается зависимостью потенциальной энергии Еп от расстоя­ния г между ними (рис. 8.1). Кривая не симметрична относительно минимума. Расстояние л0 между взаимодействую­щими частицами соответствует мини­муму потенциальной энергии при Т = — О К. Пусть при температуре Т1 сум­марная (кинетическая и потенциаль­ная) энергия равна ЕГ Это означает, что частица колеблется между точка­ми ах и Вг Среднее расстояние между двумя частицами rl = (OAl + OB1)/2.

При Т2 > Tj энергия частицы равна Е.г > Е^ и она колеблется меж­ду точками А2 и В2. Среднее расстояние между частицами равно г 2 = (ОА2 + ОВ2)/2. Ввиду того что потенциальная кривая асиммет­рична, средние расстояния между частицами по мере нагревания увеличиваются: г0 < г1 г2 < г3 < ... при О К < Т1 < Т2 < Т3 < ..., что и обусловливает тепловое расширение тел.

Основная макроскопическая особенность аморфных тел заклю­чается в естественной изотропии их свойств и отсутствии определен­ной точки плавления, что обусловлено внутренним строением тел.

Главной особенностью внутреннего строения тел, находящих­ся в аморфном состоянии, является отсутствие дальнего порядка, характерного для кристаллического состояния, т. е. строгой по­вторяемости в расположении атомов или групп атомов во всех на­правлениях вдоль всего тела.

Вместе с тем у вещества в аморфном состоянии (как и в жид­ком) существует ближний порядок, т. е. некоторый порядок в рас­положении смежных частиц. С расстоянием этот порядок умень­шается.

Обладая меньшей упорядоченностью внутреннего строения, аморфные тела в одинаковых условиях имеют большие, чем крис­таллы, удельный объем, энтропию и внутреннюю энергию.

Достаточно равновесное состояние эти тела образуют только при высокой температуре и малом давлении, что связано с уста­новлением определенного расположения частиц и расстояний между ними. В соответствии с этим аморфные тела в зависимости от скорости внешнего воздействия могут оказаться упругими или текучими. Так, например, если кусок вара положить в сосуд, то по истечении большого промежутка времени он примет форму со­суда, т. е. проявит свойства текучести. Если же этот кусок уда­рить молотком, то он расколется как хрупкое тело.

Аморфное состояние свойственно веществам самой различной химической природы. При малом давлении и высокой температу­ре вещества в этом состоянии весьма подвижны: низкомолекуляр­ные являются жидкостями, высокомолекулярные оказываются в высокоэластическом состоянии. С понижением температуры и ростом давления подвижность аморфных веществ уменьшается и все они становятся твердыми телами. Твердое аморфное состоя­ние иначе называют стеклообразным.

Полимерами называют вещества, молекулы которых пред­ставляют собой длинные цепи, составленные из большого числа атомов или атомных группировок, соединенных химическими связями. Особенность химического строения полимеров обуслов­ливает и их особые физические свойства.

Наиболее резко отличаются полимеры от низкомолекулярных веществ в механических свойствах. Известно, что для твердых тел характерны большие прочности при малых обратимых деформа­циях. Жидкости обладают способностью к неограниченной дефор­мации при весьма малой прочности. Полимеры — это материалы, механические свойства которых являются сочетанием свойств твердых тел и жидкостей; они достаточно прочны и вместе с тем способны к достаточно большим обратимым деформациям.

К полимерным материалам относят почти все живые и расти­тельные материалы, такие, как шерсть, кожа, рог, волос, шелк, хлопок, натуральный каучук и т. п., а также всякого рода синте­тические материалы — синтетический каучук, пластмассы, во­локна и др.

Большинство природных полимерных материалов представля­ет собой белковые вещества; простые белки — альбумин, глобу­лин; сложные — казеин, кератины и коллаген. В агар-агаре со­держится до 85% углеводов, главным образом полисахаридов, ко­торые также являются полимерами.

Кроме механических, полимеры обладают и другими особыми свойствами. Так, например, их растворы имеют повышенную вяз­кость; упругость пара растворителя над раствором меньше, а ос­мотическое давление больше, чем должно быть для идеальных растворов. Полимеры способны сильно набухать в жидкостях.

Длинноцепочечное строение молекул полимеров способствует образованию пленок и волокон.

В настоящее время полимеры все шире используются в качест­ве диэлектриков.

Простейшим органическим полимером является полиэтилен, полимерная цепь или макромолекула которого составлена из мно-

гократно повторяющихся мономер­ных звеньев, образующихся при со­единении молекул этилена:

п • СН2 = СН2 -> [—СН2—СН2]п.

Полиэтилен — представитель ли­нейных полимеров. Линейными на­зывают полимеры, макромолекулы ко­торых состоят из длинных одномер­ных цепей (рис. 8.2, а; А — моно­мерное звено). Разветвленный поли­мер, кроме основной цепи, имеет бо­ковые ответвления — боковые цепи (рис. 8.2, б).

Полимеры, построенные из длинных цепей, соединенных друг с другом в пространственную сетку, являются сетчатыми, или пространственными, а построенные из одинаковых полиме­ров — гомополимерами. Полимерные соединения, цепи которых состоят из различных мономерных звеньев, относят к гетеропо-лимерам.

Макромолекула полимера не является жесткой. Вследствие теплового движения или под действием внешнего поля ее про­странственная форма может изменяться. Эти изменения называ­ют конформационными превращениями.

Предельно гибкой является свободносочлененная цепь (рис. 8.3). В такой цепи углы между валентными связями не фиксированы и вращение вокруг них свободное. В реальных полимерных цепях валентные углы а имеют определенное значение (рис. 8.4). Это приводит к зависимости положения одного звена цепи от положе­ния предыдущего. Такая цепь принимает меньшее число конформаций, чем свободносочлененная, но и она способна сильно изги­баться.

Макромолекулы в результате теплового движения звеньев при­нимают разнообразные конформации, из них крайними являются, с одной стороны, жесткая прямая палочка, с другой стороны, пре­дельно гибкая цепь, свернувшаяся в клубок (глобула).

Макромолекулы могут достигать огромных размеров, обладая относительной молярной массой от нескольких тысяч до сотен миллионов и даже миллиарда. Из-за большого размера молекул полимера температура кипения его чрезвычайно высока (необхо­дима очень большая энергия для испарения огромных молекул). Отсюда у всех полимеров температура разложения ниже темпера­туры кипения и газовое состояние у них не реализуется.

 


 

Рис. 8.3 Рис. 8.4

 

Следовательно, полимеры находятся в конденсированном со­стоянии: жидком или твердом. Среди твердых полимеров следует различать аморфные и кристаллические.

Аморфный полимер в высокоэластическом состоянии (см. § 8.3) может сильно деформироваться (до 1000%), его деформация обра­тима, необратимое течение отсутствует. В этом смысле высоко­эластическое состояние — промежуточное между жидким и твер­дым. Высокоэластическое состояние полимера возникает вслед­ствие гибкости его макромолекул.

Макромолекулы во всех состояниях полимеров всегда более или менее упорядочены, что приводит к надмолекулярным структу­рам. Известно, что полимеры характеризуются большим многообра­зием надмолекулярных структур не только в кристаллическом, но и в аморфном состоянии. Первичными элементами этих структур яв­ляются полимерные молекулы, либо свернутые в глобулы, либо раз­вернутые в линейную макромолекулу. При контакте глобул могут образоваться глобулярные структуры, содержащие большое число молекул, иногда до 1000. При контакте развернутых макромолекул возникают продолговатые пачки (рис. 8.5), которые имеют флуктуационную природу — в одних местах исчезают, в других — появля­ются, но вместе с тем существуют довольно длительно.

Простейшие первичные надмолекулярные структуры — пачки полимерных цепей — наблюдают как в некристаллических, так и в кристаллических полимерах. При кристаллизации пачки склады­ваются в «ленты». На рис. 8.6 изображены выпрямленная (а) и сло­женная в ленту (б) пачки. Стремление к уменьшению поверхност­ного натяжения приводит к складыванию лент в пластины (рис. 8.7) и образованию сферолитов (рис. 8.8) или единичных кристал­лов (рис. 8.9, единичный кристалл вируса некроза табака).

Многочисленные надмолекулярные структуры разделены ака­демиком В. А. Каргиным на четыре основных типа: глобулярный (свернуты одиночные молекулы или группы молекул), полоса­тый (структуры всех полимеров в высокоэластическом состоя­нии), фибриллярный (линейные пачки или их совокупности, со­храняющие продолговатую форму), крупноструктурный (сферолиты, единичные кристаллы и т. п.).

 

Формы и размеры надмолекулярных структур оказывают большое влияние на прочность полимеров. Так, например, обра­зец с малыми сферолитами обладает высокой прочностью и хоро­шими эластическими свойствами, образцы же с крупными сферо­литами разрушаются хрупко.

Как видно из вышеизложенного, полимерные материалы ха­рактеризуются широким набором ценных физико-химических свойств, что позволяет использовать их в различных областях науки и техники, а также в медицине.

Из полимеров типа полиэтилена, поливинилхлорида и др., легко обрабатываемых давлением, изготовляют различные медицинские инструменты и приспособления. Тефлон, капрон и лавсан, милар, силастиковый полимер обладают высокой химической стойкостью, вследствие чего их используют при изготовлении протезов внутрен­них частей организма (кровеносных сосудов, клапанов сердца, сухо­жилий, вживляемых глазных линз и т. п.). Раствор полимера поли-винилпирролидона — хороший заменитель кровяной плазмы.

В настоящее время в искусственной почке применяются целло­фановые мембраны. Такие мембраны задерживают белок и кле­точные элементы крови. Проводятся эксперименты по созданию искусственных легких с силиконовыми мембранами, обладающи­ми высокой пропускной способностью по отношению к кислороду и диоксиду углерода.

Большой интерес для медицины представляют тканевые клеи, например алкил-а-цианокрилаты, n-бутил-а-цианокрилат, быст­ро полимеризующиеся в пленку, которые используют для закры­тия ран без наложения швов.

К высокомолекулярным соединениям относятся также биополи­меры, являющиеся структурной основой всех живых организмов и играющие главную роль в процессе их жизнедеятельности, — это

 


 


 

Рис. 8.8 Рис. 8.9

 


белки, нуклеиновые кислоты, полисахариды, гликопротеиды, ли-попротеиды, гликолипиды и др.

Так, молекула белка состоит из одной или нескольких полипеп­тидных цепей, образовавшихся в результате поликонденсации ами­нокислот. При объединении аминокислот в белковую цепь образу­ются пептидные связи — NH —СО—, строение которых было уста­новлено Полингом и Кори методом рентгеноструктурного анализа (см. § 19.7). Состав аминокислот и их последовательность представ­ляет собой первичную структуру белка, имеющую определяющее значение для его функций. Это подтверждается двумя группами фактов. Во-первых, различиями и сходством структур однотипных белков разных видов и, во-вторых, патологическими изменениями функций белков при замещениях (мутационных) аминокислотных остатков. Мутации выражаются в замещении аминокислотных ос­татков. В результате искажение всегда имеет серьезные биологиче­ские последствия. Эти явления детально изучены на гемоглобине.

Известен ряд наследственных заболеваний крови — анемий. При так называемой серповидноклеточной анемии, распростра­ненной в некоторых районах Африки, Юго-Восточной Азии, Сре­диземноморья, эритроциты имеют форму серпов. В этом случае гемоглобин имеет структуру, подобную кристаллу. В результате эритроциты слипаются и подвергаются гемолизу — распаду. Тя­желые нарушения кровообращения, вызванные этим заболевани­ем, зачастую приводят к смерти в раннем возрасте.

Были обнаружены различия подвижности гемоглобинов при электрофорезе в норме и при анемии, что объясняется различием в аминокислотном составе и тем самым в числе заряженных групп. Болезни гемоглобина назвали молекулярными. Оказалось, что отличие аномальных гемоглобинов от нормального определя­ется замещением всего лишь одного остатка в белковой цепи.

Нуклеиновые кислоты представляют собой еще один важнейший тип биополимеров. Они служат обязательными участниками синте­за белков. Основная цепь нуклеиновой кислоты состоит из чередую­щихся звеньев фосфорной кислоты и сахара — рибозы в рибонукле­иновой кислоте (РНК) и дезоксирибозы в дезоксирибонуклеиновой кислоте (ДНК). В этом смысле основные цепи РНК и ДНК лишены первичной структуры, они являются монотонным орнаментом, но не текстом. Однако к сахарам присоединены так называемые азо­тистые основания, которые уже не повторяют друг друга. В це­лом, схема цепи нуклеиновой кислоты имеет следующий вид:

Последовательность азотистых оснований в нуклеиновой кис­лоте несет важную биологическую информацию. Определить пер­вичную структуру нуклеиновой кислоты значительно сложнее, чем белка. Нуклеиновые кислоты являются асимметричными мо­лекулами и вращают плоскость поляризации поляризованного света вправо (см. § 20.4).

Углеводы, полисахариды, также относятся к биополимерам. Полисахаридные цепи построены из моносахаридных звеньев, имеющих в мономерном состоянии формулу C6H]2Ofi. В отличие от нуклеиновых кислот, первичная структура полисахаридов не не­сет какой-либо биологической информации. Их размеры и раз-ветвленность варьируют в широких пределах, молекулы не имеют определенной длины. В целом, полисахариды играют важную роль в наружных мембранах некоторых клеток, участвуют в обра­зовании клеточных оболочек бактерий многих видов. В мембранах полисахариды находятся в комплексах с белками и липидами — жировыми веществами, неизменно присутствующими в наружных и внутренних мембранах. Мембраны образованы комплексами белков с липидами и в ряде случаев с полисахаридами (см. § 11.1).

Жидкие кристаллы

Жидкими кристаллами называют вещества, которые об­ладают свойствами и жидкостей, и кристаллов.

По своим механическим свойствам эти вещества похожи на жидкости — они текут. По оптическим свойствам жидкие крис­таллы ведут себя как анизотропные тела — кристаллы: вращают плоскость поляризации, обнаруживают двойное лучепреломление и т. п. Чаще всего жидкокристаллические свойства вещество про­являет в определенном температурном интервале, выше которого оно находится в аморфно-жидком состоянии, ниже — в твердо-кристаллическом.

Двойственность физических свойств обусловлена внутренним строением жидких кристаллов. Взаимное расположение молекул в них является промежуточным между аморфным состоянием, в котором полностью отсутствует дальний порядок, и твердым кристаллическим, в котором существует как дальний порядок в расположении центров молекул, так и упорядоченность в ориен­тации молекул. Жидкокристаллическое состояние наблюдается у веществ, молекулы которых имеют вытянутую форму в виде па­лочки или удлиненной пластинки. Такая форма молекул приво­дит к возможности упорядочения их ориентации.

По характеру молекулярной упорядоченности различают не-матические и смектические жидкие кристаллы. В нематичес-

ких жидких кристаллах молекулы ориентированы параллельно (рис. 8.10, а), но их центры расположены беспорядочно. Смекти-ческие кристаллы состоят из параллельных слоев, в которых рас­положение молекул упорядочено (рис. 8.10, б). Особый класс со­ставляют кристаллы холестерического1 типа. Молекулы в таких кристаллах, как и в смектических, собраны в слои. Однако вну­три каждого слоя параллельное расположение осей молекул напо­минает нематическое состояние (рис. 8.10, в). Между слоями так­же имеется упорядочение: при переходе к соседним слоям изме­няется на небольшой угол общая ориентация данного слоя по отношению к общей ориентации предыдущего слоя (наблюдается винтовая закрученность молекулярной структуры).

Молекулярная структура холестерических жидких кристаллов очень чувствительна к любому малейшему внешнему воздействию. Малое возмущение может нарушить слабые межмолекулярные си­лы, что приводит к заметным изменениям оптических свойств. Так, температура оказывает большое влияние на цвет кристалла, в зави­симости от температуры он может быть любого цвета — от фиолето­вого до красного. Такие свойства жидких кристаллов используют для измерения изменений температуры различных участков тел.

В медицине это позволяет фиксировать расположение вен, ар­терий и других образований, имеющих иную теплоотдачу, чем ок­ружающие среды. Жидкокристаллические вещества также при­меняются в различных температурно-чувствительных сигналь­ных устройствах.

Молекулярная структура жидких кристаллов, а следователь­но, и их оптические свойства изменяются в присутствии ничтож­ных количеств паров некоторых химических веществ. Это позво­ляет использовать жидкие кристаллы для обнаружения малых количеств (следов) этих веществ.

Их строение характерно для соединений, содержащих холестерин.

На изменении оптических свойств жидких кристаллов под воз­действием электрического поля основано применение их в прибо­рах и часах в качестве цифровых индикаторов.

Исследование жидких кристаллов в живых организмах — ог­ромная, малоизученная, но чрезвычайно перспективная область.

Механические свойства твердых тел

Изменение взаимного расположения точек тела, которое приво­дит к изменению его формы и размеров, называют деформацией.

Деформации могут быть вызваны внешними воздействиями (механическими, электрическими или магнитными) или измене­нием температуры тела. Здесь рассматриваются деформации, воз­никающие при действии сил на тело.

В твердых телах деформацию называют упругой, если после прекращения действия силы она исчезает. Если же деформация сохраняется и после прекращения внешнего воздействия, то ее называют пластической. Промежуточный случай, т. е. неполное исчезновение деформации, принято называть упругопластиче-ской деформацией.

Наиболее простым видом деформации является растяжение (сжатие). Оно, например, возникает в стержне (рис. 8.11) при действии силы, направленной вдоль его оси. Если стержень дли­ной I при этом удлинился наго е = Al/l является мерой дефор­мации растяжения и называется относительным удлинением.

Другим видом деформации является сдвиг (рис. 8.12). Сила, касательная к одной из граней прямоугольного параллелепипеда,

 

вызывает его деформацию, превращая в косоугольный параллеле­пипед (см. штриховые линии на рисунке). Угол у называют углом сдвига, a tg у — относительным сдвигом. Так как обычно угол у мал, то можно считать tg у = у.

При действии на тело внешней деформирующей силы расстоя­ние между атомами (ионами) изменяется. Это приводит к возник­новению внутренних сил, стремящихся вернуть атомы (ионы) в первоначальные положения. Мерой этих сил является механиче­ское напряжение (или просто напряжение).

Непосредственно напряжение не измеряется. В ряде случаев его можно вычислить через внешние силы, действующие на тело. Косвенно напряжение можно определить по некоторым физиче­ским эффектам

Применительно к деформации растяжения напряжение a мож­но выразить как отношение силы к площади поперечного сечения стержня (см. рис. 8.11, б):

а = F/S.

Для деформации сдвига напряжение т выражают как отношение силы к площади грани, к которой сила касательна (см. рис. 8.12, б). В этом случае т называют касательным напряжением:

т = F/S.

Упругие деформации подчиняются закону Гука, согласно кото­рому напряжение пропорционально деформации. Для двух рас­смотренных случаев (растяжение-сжатие и сдвиг) это аналитиче­ски записывается так:

(8.1)

где Е — модуль Юнга, a G — модуль сдвига.

Экспериментальная кривая растяжения приведена на рис. 8.13. Участок ОА соответствует упругим деформациям, точка В преде­лу упругости, характеризующему то максимальное напряжение, при котором еще не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации). Горизонталь­ный участок CD кривой растяжения соответствует пределу теку­чести — напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяе­мое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности.

Между упругими свойствами кристаллических мономеров и полимерных материалов существует огромная и принципиальная разница, например, в пределах прочности сталь разрывается уже

 


при растяжении на 0,3%, а мягкие резины можно растягивать до 300%. Это связано с качественно другим механизмом упругос­ти высокомолекулярных соединений.

Как уже говорилось, при деформации кристаллических твер­дых тел, например стали, силы упругости всецело определяются изменением межатомных расстояний. Структура высокомолеку­лярных соединений не регулярна. Они состоят из очень длинных гибких молекул, которые причудливо изогнуты, части молекул находятся в хаотическом тепловом движении так, что их форма и длина все время изменяются. Но в каждый данный момент боль­шинство молекул в недеформированном образце имеет длину, близкую к наиболее вероятной. При приложении нагрузки к мате­риалу (рис. 8.14, а) его молекулы выпрямляются в соответствую­щем направлении и длина образца увеличивается (рис. 8.14, б). После снятия нагрузки вследствие хаотического теплового движе­ния длина каждой молекулы восстанавливается и образец укора­чивается.

Упругость, свойственную полимерам, называют каучукопо-добной эластичностью (высокой эластичностью или высоко-эластичностью).

Приведем данные по механическим свойствам некоторых ма­териалов (табл. 16).

Таблица 16

 

Материал Модуль Юнга, ГПа Предел прочности, МПа
Сталь Капрон стеклонапол-ненный Органическое стекло 8 3,5 150 50

 

Различие между деформацией кристаллических мономеров и полимерных материалов проявляется и во временной ее зависи­мости. Дело в том, что практически все материалы обладают пол­зучестью: под действием постоянной нагрузки происходит их де­формация. В полимерах распрямление молекул при нагрузке ма­териала и скольжение макромолекул происходят более длительно, чем, например, ползучесть в металлах. В какой-то мере при ползу­чести процессы, происходящие в полимере, соответствуют тече­нию вязкой жидкости. Сочетание вязкого течения и высокой элас­тичности позволяет называть деформацию, характерную для по­лимеров, вязкоупругой.

Упругие и вязкие свойства тел удобно моделировать. Это дает возможность нагляднее представить механические свойства био­логических объектов (см. § 8.4).

В качестве модели упругого тела (упругой деформации) выбе­рем пружину (рис. 8.15, а), малая деформация которой соответст­вует закону Гука.

Моделью вязкого тела является поршень с отверстиями, дви­жущийся в цилиндре с вязкой жидкостью (рис. 8.15, б).

Силу сопротивления среды в этом случае примем пропорци­ональной скорости перемещения поршня [см. (5.16)]:

(8.2)

 

Преобразуем уравнение (8.2), осно­вываясь на аналогии. Вместо силы со­противления запишем напряжение (Fconp —> о), т. е. силу, отнесенную к еди­нице площади, коэффициент трения, характеризующий свойство среды ока­зывать сопротивление движущемуся в ней телу, заменим коэффициентом вяз­кости среды —» г|), смещение тела — относительным удлинением —> е). Тог­да вместо (8.2) получим связь между скоростью вязкой деформации и напря­жением:

(8.3)

Из (8.3) видно что напряжение зависит не от самой деформации, а от ее скорости (скорости пе-

ремещения поршня).

Вязкоупругие свойства тел моделируются системами, состоя­щими из различных комбинаций двух простых моделей: пружина и поршень. Рассмотрим некоторые из них.

Наиболее простой системой, сочетающей упругие и вязкие свойства, является модель Максвелла, в которой последовательно соединены упругий и вязкий элемент (рис. 8.15, в).

При воздействии постоянной силой пружина упруго мгновенно удлиняется до значения, определяемого законом Гука, а поршень движется с постоянной скоростью до тех пор, пока действует си­ла (напряжение). Так реализуется на модели ползучесть мате­риала.

Если быстро растянуть модель Максвелла и закрепить это со­стояние, то деформация будет сохраняться. Пружина после быст­рого растяжения начнет сокращаться, вытягивая поршень. Со временем будет происходить релаксация, т. е. уменьшение (рас­слабление) напряжения.

Опишем математически эту модель. Из закона Гука (8.1) сле­дует— упругая часть общей деформации в мо­дели Максвелла. Скорость этой деформации равна

 


Скорость вязкой деформации выразим из (8.3):

(8.5)

Суммируя (8.4) и (8.5), находим скорость общей (суммарной) де­формации модели Максвелла:

(8.6)

Из уравнения (8.6) можно получить временные зависимости как деформации, так и напряжения.

Если(постоянная сила приложена к модели), то из (8.6) следует

 

 


Интегрируя последнее выражение от начального момента време­ни и нулевой деформации до текущих значений t и е, получаем

 

Это соответствует ползучести (рис. 8.16, а).

Если(поддерживается постоянная деформация), то из (8.6) следует

 

Интегрируя последнее выражение от начального момента времени и начального напряжения о0 до текущих значений t и о, получаем:

(8.8)

Это соответствует релаксации напряжения (рис. 8.16, б).

В рамках модели Максвелла под действием нагрузки происхо­дит, как было показано, быстрое (мгновенное) первоначальное уп­ругое растяжение. В реальных полимерах вязкоупругая деформа­ция обычно происходит сразу же после приложения нагрузки. Поэтому более подходящей может оказаться модель Кельвина — Фойхта, состоящая из параллельно соединенных пружины и по­ршня, нечто вроде амортизатора в автомашине (см. рис. 8.15, г).

Если мгновенно создать в такой системе напряжение

(8.9)

приложив постоянную силу, то деформация системы будет воз­растать. Используя (8.1) и (8.3), преобразуем (8.9):

Проинтегрируем последнее выражение от начального момента времени и ну­левой деформации до текущих значе­ний t и с:

Потенцируя, имеем

 


Как видно, в рамках модели Кельвина—Фойхта деформация экс­поненциально возрастает со временем. При снятии нагрузки (о = О в момент tj деформация начнет экспоненциально убывать. Оба эти случая показаны на рис. 8.17.

В полимерах реализуются разные виды деформации: упругая обратимая (модель — пружина), вязкоупругая обратимая (модель Кельвина—Фойхта) и необратимая вязкая (модель — поршень). Сочетание этих трех элементов позволяет создавать модели, наи­более полно отражающие механические свойства тел и, в частнос­ти, биологических объектов.

Моделирование механических свойств тел широко используется в реологии. Основная задача реологии — это выяснение зависимости напряжения от относительной деформации: о = /(в); напряжения от времени (релаксация напряжения): о = f(t) при l = const; относи­тельной деформации от времени (ползучесть): е = f(t) при о = const.

§ 8.4. Механические свойства биологических тканей

Под механическими свойствами биологических тканей пони­мают две их разновидности. Одна связана с процессами биологи­ческой подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечи­ваются АТФ, их природа рассматривается в курсе биохимии. Ус­ловно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность — пас­сивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям.

Как технический объект биологическая ткань — композици­онный материал, он образован объемным сочетанием химически разнородных компонентов. Механические свойства биологиче­ской ткани отличаются от механических свойств каждого компо­нента, взятого в отдельности. Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов.

Костная ткань. Кость — основной материал опорно-двига­тельного аппарата. В упрощенном виде можно считать, что 2/3 мас­сы компактной костной ткани (0,5 объема) составляет неорганиче­ский материал, минеральное вещество кости — гидроксилапатит ЗСа3(Р04)2 • Са(ОН)2. Это вещество представлено в форме микро­скопических кристалликов. В остальном кость состоит из органи­ческого материала, главным образом коллагена (высокомолеку­лярное соединение, волокнистый белок, обладающий высокоэлас-тичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).

Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуаль­ных условий роста организма и, конечно, от участка организма.

Композиционное строение кости придает ей нужные механиче­ские свойства: твердость, упругость и прочность. Зависимость о = = /(е) для компактной костной ткани имеет характерный вид, по­казанный на рис. 8.18, т. е. подобна аналогичной зависимости для твердого тела (см. рис. 8.13); при небольших деформациях выполняется закон Гука. Модуль Юнга около 10 ГПа, предел про­чности 100 МПа. Полезно эти данные сопоставить с данными для капрона, армированного стеклом (см. табл. 16, заметно хорошее соответствие).

Примерный вид кривых ползучести компактной костной тка­ни приведен на рис. 8.19. Участок ОА соответствует быстрой де-

 

формации, АВ — ползучести. В момент tv соответствующий точ­ке В, нагрузка была снята. ВС соответствует быстрой деформации сокращения, CD — обратной ползучести. В результате даже за длительный период образец кости не восстанавливает своих прежних размеров, сохраняется некоторая остаточная деформа­ция ;:ост.

Этой зависимости приближенно соответствует модель (рис. 8.20, а), сочетающая последовательное соединение пружины с моделью Кельвина—Фойхта. Временная зависимость относитель­ной деформации показана на рис. 8.20, б. При действии постоян­ной нагрузки мгновенно растягивается пружина 1 (участок ОА), затем вытягивается поршень (ползучесть АВ), после прекращения нагрузки происходит быстрое сжатие пружины 1 (ВС), а пружи­на 2 втягивает поршень в прежнее положение (ползучесть CD). В предложенной модели не предусматривается остаточная дефор­мация.

Схематично можно заключить, что минеральное содержимое кости обеспечивает быструю деформацию, а полимерная часть (коллаген) определяет ползучесть.

Если в кости или в ее механической модели быстро создать постоянную деформацию, то скачкообразно возникает и напряже­ние (участок ОА на рис. 8.20, в). На модели это означает растяжение пру­жины 1 и возникновение в ней напря­жения. Затем (участок AS) эта пру­жина будет сокращаться, вытягивая поршень и растягивая пружину 2, на­пряжение в системе будет убывать (релаксация напряжения). Однако да­же спустя значительное время сохра­нится остаточное напряжение оост. Для модели это означает, что не воз­никнет при постоянной деформации такой ситуации, чтобы пружины вер­нулись в недеформированное состоя­ние.

Кожа. Она состоит из волокон кол­лагена, эластина (так же как и колла­ген, волокнистый белок) и основной ткани — матрицы. Коллаген состав­ляет около 75% сухой массы, а эластин — около 4%. Примерные данные по механическим свойствам приведены в табл. 17.

Эластин растягивается очень сильно (до 200—300%), пример­но как резина. Коллаген может растягиваться до 10%, что соот­ветствует капроновому волокну.

Таблица 17

 

Материал Модуль упругости, МПа Предел прочности, МПа
Коллаген Эластин 10—100 0,1—0,6 100 5

Из сказанного ясно, что кожа является вязкоупругим материа­лом с высокоэластическими свойствами, она хорошо растягивает­ся и удлиняется.

Мышцы. В состав мышц входит соединительная ткань, со­стоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.

Релаксация напряжения в гладких мышцах соответствует модели Максвелла (см. рис. 8.15, в; 8.16, б). Поэтому гладкие мышцы могут значительно растягиваться без особого напряжения, что способствует увеличению объема полых органов, например мочевого пузыря.

Механическое поведение скелетной мышцы соответствует мо­дели, представленной на рис. 8.20, а. При быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается до оост (см. рис. 8.20, в).

Зависимость о = де) для скелетной мышцы нелинейна (рис. 8.21). Анализ этой кривой показывает, что примерно до е ~ 0,25 в порт­няжной мышце лягушки механизм деформации обусловлен рас­прямлением молекул коллагена (см. § 8.3). При большей деформа­ции происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механиче­ские свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Со­держание этих составляющих сосудистой ткани изменяется по хо­ду кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2:1, а в бедренной артерии 1 : 2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артерио-лах они уже являются основной составляющей сосудистой ткани.

При детальном исследовании механических свойств сосудис­той ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно, однако, рассматривать де­формацию сосуда в целом как результат действия давления из­нутри на упругий цилиндр.

 

 


Рассмотрим цилиндрическую часть кровеносного сосуда дли­ной I, толщиной h и радиусом внутренней части г. Сечения вдоль и поперек оси цилиндра показаны на рис. 8.22, а, б. Две половины цилиндрического сосуда взаимодействуют между собой по сечени­ям стенок цилиндра (заштрихованные области на рис. 8.22, а). Общая площадь этого «сечения взаимодействия» равна 2hl. Если в сосудистой стенке существует механическое напряжение σ, то си­ла взаимодействия двух половинок сосуда равна

F = σ • 2hl. (8.10)

Эта сила уравновешивается силами давления на цилиндр изнутри (они показаны стрелками на рис. 8.22, б). Силы направлены под разными углами к горизонтальной плоскости (на рисунке). Для того чтобы найти их равнодействующую, следует просуммировать горизонтальные проекции. Однако проще найти равнодействую­щую силу, если умножить давление на проекцию площади полу­цилиндра на вертикальную плоскость ОО'. Эта проекция равна 2rl. Тогда выражение для силы через давление имеет вид

F=p • 2rl. (8.11)

Приравнивая (8.10) и (8.11), получаем σ • 2hl = р • 2rl, откуда

Это уравнение Ламе.

Будем считать, что при растяжении сосуда объем его стенки не изменяется (площадь стенки возрастает, а толщина убывает), т. е. не изменяется площадь сечения стенки сосуда (рис. 8.22, б):

 


(8.14)

Из (8.14) видно, что в капиллярах (г -» 0) напряжение отсутст­вует (а —> 0).

 

 

В заключение отметим разделы и направления медицины, для которых особо важно иметь представление о пассивных механиче­ских свойствах биологических тканей:

в космической медицине, так как человек находится в но­
вых, экстремальных, условиях обитания;

в спортивной медицине результативность достижений и ее
возрастание побуждают спортивных медиков обращать внимание на
физические возможности опорно-двигательного аппарата человека;

механические свойства тканей необходимо учитывать гиги­
енистам при защите человека от действия вибраций;

в протезировании при замене естественных органов и тка­
ней искусственными также важно знать механические свойства и
параметры биологических объектов;

в судебной медицине следует знать устойчивость биологиче­
ских структур по отношению к различным деформациям;

в травматологии и ортопедии вопросы механического воз­
действия на организм являются определяющими.

Этот перечень не исчерпывает значения материала, изложен­ного в настоящей главе, для врачебного образования.

 

 

Дополнительный материал

 

 

Перечень вопросов

Введение

Механические свойства биологических тканей. Вязкоупругие, упруговязкие и и вязкопластичные системы. Механические свойства мыщц, костей, кровеносных сосудов, легких.

Задачи, объекты и методы биомеханики.

Значение биомеханики для медицины

Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза .

Сочленение и рычаги в опорно-двигательном аппарате человека.

Эргометрия. Механические свойства тканей организма.


Тема:

Основы биомеханики

Введение

 

Механические процессы в живом мире протекают на разных уровнях организации, от целого организма до клетки и субклеточных структур, и относятся к числу важнейших явлений в организме. Биомеханические явления весьма разнохарактерны и включают в себя такие процессы, как функционирование опорно-двигательной системы организма, процессы деформации тканей и клеток, распространение волн упругой деформации, сокращение и расслабление мышц, конвекционное движение биологических жидкостей и легочного газа.

 

 

Момент инерции (J) материальной точки равен произведению массы (m) материальной точки на квадрат расстояния (г) этой точки от оси вращения:

J=mr2

Момент инерции твердого тела

,

где интегрирование должно проводиться по всему объему тела

Если для какого-либо тела известен его момент инерции (J0) от­носительно оси, проходящей через центр тяжести, то момент инерции (J) относительно любой оси, параллельной первой, может быть найден по формуле

J = J0 + mа2,

где а — расстояние от центра тяжести тела до оси вращения; m — масса тела.

Момент инерции различных однородных тел массой m относи­тельно оси, проходящей через центр масс: шара радиусом R

 

J= mR22/5,

цилиндра с внутренним радиусом r и внешним R (ось враще­
ния совпадает с геометрической осью цилиндра)

J= m(r2+R2)/2

В частном случае момент инерции: тонкостенного цилиндра (R ≈ г)

J=mR2

сплошного цилиндра (г=0)

J= mR2/2;

тонкого стержня длиной l (ось вращения проходит перпенди­кулярно стержню через его середину)

J= ml2/12

 

Момент силы относительно оси вращения равен произведе­нию силы F на плечо l:

,

где l— кратчайшее расстояние от оси вращения до линии дейст­вия силы.

 

Изменение момента количества движения пропорционально величине приложенного момента силы и времени его действия (основное уравнение динамики вращательного движения):

dL = Mdt,

где dL — изменение момента количества движения.

Момент ко­личества движения L равен произведению момента инерции J на угловую скорость вращения ωо, т. е.

L = Jω0;

М — момент силы, приложенной к телу; dt — промежуток времени, в течение ко­торого на тело действовала сила.

Момент импульса (момент количества движения) материальной точки

Li=miviri

Момент импульса тела

 

Если момент инерции тела постоянен, то основное уравне­ние динамики вращательного движения можно записать в виде

Jdω0 = Mdt или М =Jε,

где ε — угловое ускорение.

Для изолированного тела, способного изменять момент инер­ции при вращении, закон сохранения момента количества дви­жения можно записать так:

L = const или Jω0 = const.

Кинетическая энергия вращающегося тела

Кинетическая энергия тела, вращающегося с угловой ско­ростью ω вокруг оси, при поступательном движении оси со ско­ростью v

Ek=Jω2/2+mv2/2

 

Элементарная работа во вращательном движении

dA=Mdφ

где М — момент силы, приложенной к телу. Работа силы при вращательном движении

где углы φ1 и φ2 соответствуют начальному и конечному положе­ниям радиуса-вектора любой точки твердого тела.

 

Сила, действующая на частицу со стороны окружающей жидко­сти, при центрифугировании

F1 = ρ02r,

где ρ0 — плотность жидкости, V — объем частицы, ω — угловая скорость вращения, r — расстояние частицы от оси вращения.

Сила, действующая на частицу при ее движении по окружности,

F = ρ12r,

где ρ1 — плотность вещества частицы. При F1≠F происходит перемещение частицы в направлении к оси вращения (при F1> >F) или от оси (при F1<.F).

 

 

МЕХАНИЧЕСКИЕ СВОЙСТВА БИОЛОГИЧЕСКИХ ТКАНЕЙ.

ВЯЗКОУПРУГИЕ, УПРУГОВЯЗКИЕ И ВЯЗКОПЛАСТИЧНЫЕ

СИСТЕМЫ. МЕХАНИЧЕСКИЕ СВОЙСТВА МЫШЦ, КОСТЕЙ,

КРОВЕНОСНЫХ СОСУДОВ, ЛЁГКИХ

 

Под влиянием механических воздействий (природных и искусственных) в биологических тканях, органах и системах появляется механическое движение, возникают деформации и напряжения.

Физиологический ответ на эти воздействия зависит от механических свойств биологических тканей и жидкостей. Знания, как меняются под механическим воздействием свойства биологических тканей и жидкостей, важно для понимания физиологии органа, организма и проявления патологического процесса, являются фундаментом профилактики, защиты организм от вредного воздействия и используются для применения искусственных органов и тканей.

Биологические ткани, обладают сложной анизотропной структурой, зависящей от функций, для которых они предназначены. Обычно биологические ткани испытывают большие деформации. Зависимость между силами и удлинениями, соответственно между напряжениями и деформациями, устанавливается экспериментальным образом и имеет нелинейный характер.

Деформацией называют изменение взаимного положения точек тела при котором меняются расстояния между ними в результате внешнего воздействия. Деформации могут быть вызваны внешними воздействиями или изменением температуры.

Деформацию называют упругой, если после прекращения действия силы она исчезает. Неупругие деформации являются пластическими. Мерой деформации служит относительная деформация , где х - первоначальное значение величины, характеризующей деформацию, а - изменение этой величины при деформации.

Напряжением называют внутреннюю силу возникающую в деформированном теле под внешним воздействием, отнесенную к площади поперечного сечения тела перпендикулярной силе:

 

Упругие деформации подчиняются закону Гука, согласно которому напряжение пропорционально относительной деформации:

 

где Е - модуль упругости, он равен напряжению, возникшему при относительной деформации, равной единице. При односторонней деформации Е называют также модулем Юнга.

Закон Гука обычно справедлив при малых деформациях. Экспериментальная кривая растяжения приведена на рисунке.

 

 
 

 

 


B

A

 

 
 


O

 

 

Участок ОА соответствует упругим деформациям, точка В - пределу упругости, характеризующему то максимальное напряжение, при котором ещё не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации).

Горизонтальный участок СД кривой растяжения соответствует пределу текучести - напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяемое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности.

Биологические структуры, мышцы, сухожилия, кровеносные сосуды, легочная ткань и др., представляют собой вязкоупругие или упруговязкие системы. То есть их механические свойства, проявляющиеся при действии внешней силы, можно промоделировать сочетанием упругих и вязких элементов (рисунок).

а б

а) идеально упругая пружина б) чисто вязкостный элемент

 

 

Примером чисто упругого элемента служит идеально упругая пружина, в которой процесс деформации подчиняется закону Гука:

, ()

 

где - напряжение;

F- упругая сила, равная внешней силе (нагрузке), которая приложена перпендикулярно к поперечному сечению с площадью “S”;

Е - модуль упругости;

- относительная деформация;

х” и “Dх” - исходная длина и её изменение при деформации.

Пример чисто вязкостного элемента - цилиндр с вязкой жидкостью и неплотным поршнем. Изменение длины вязкостного элемента пропорционально времени “t” и зависит от приложенной силы “f”, площади поперечного сечения моделируемого объекта “S”, его исходной длины “х” и вязкости вещества этого объекта “h“ в соответствии с уравнением:

 

.

 

При приложении растягивающей силы к гладким мышцам они ведут себя в основном подобно телу Максвелла:

ббh

а

 
 

 


Начальное напряжение, обусловленное упругостью элемента “Е”, постепенно исчезает из-за необратимой деформации в вязком элементе “б“. Это способствует большой растяжимости полых органов, содержащих гладкие мышцы, например, мочевого пузыря.

 
Скелетная мышца в покое по механическому поведению представляет собой вязкоупругий материал. В частности, для неё характерна релаксация напряжения. При внезапном растяжении мышцы на определенную величину напряжение резко возрастает, а затем уменьшается до определенного равновесного уровня. И, наоборот, когда мышца находившаяся в растянутом состоянии, внезапно укорачивается, напряжение сильно падает и после этого выходит на меньший равновесный уровень. То есть механические свойства скелетной мышцы во многих отношениях аналогичны свойствам следующей модели:

 

б

 
 

 


а1 а2

Но в отличие от этой механическо

– Конец работы –

Эта тема принадлежит разделу:

Лабораторная работа № 1 Изучение упругих и прочностных свойств тканей организма

Какая сила необходима для разрушения при сжатии бедренной кости диаметром мм с толщиной стенок мм если предел прочности кости... Определить толщину стенки большой берцовой кости диаметром мм если ее... Определить абсолютное удлинение сухожилия длиной см и диаметром мм под действием силы н Модуль упругости...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Порядок работы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лабораторная работа № 1
«Определение модуля упругости костной ткани» Цель работы: Изучение упругих и прочностных свойств тканей организма. Используя универсальную установку определить модуль упру

Лабораторная работа № 1
« ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ КОСТИ ПО ИЗГИБУ»   Приборы и принадлежности: 1) индикатор длин; 2) штангенциркуль; 3) миллиметровая линейка длиной

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги