рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гемопоэз у эмбриона и плода

Гемопоэз у эмбриона и плода - раздел Медицина, КУРС ЛЕКЦИЙ: КЛИНИЧЕСКАЯ ЛАБОРАТОРНАЯ ДИАГНОСТИКА   Первое Образование Крови У Зародыша Происходит В Же...

 

Первое образование крови у зародыша происходит в желточном мешке из клеток мезенхимы одновременно с развитием сосудов. Это – первый, так называемый ангиобластический период кроветворения. Кровяные островки окружают со всех сторон развивающийся зародыш.

Как выяснено, в мезенхиме зародыша, а также во внеэмбриональной мезенхиме у высших позвоночных и у человека из подвижных мезенхимных клеток очень рано (очевидно, в связи с тем, что мезенхима раньше всех других тканей принимает участие в обмене веществ) обособляются зачатки кровяной ткани, или кровяные гистиобласты (мезобласты) и гемоцитобласты. В кровяных островках мезенхимы клетки, округляясь или высвобождаясь из синцитиальной связи, преобразуются в первичные кровяные клетки. Клетки, ограничивающие кровяные островки, становятся плоскими пластинками и, соединяясь наподобие эпителиальных клеток, образуют стенку будущего сосуда. Эти уплощенные клетки получили название эндотелиальных клеток.

В кровяных островках найдены также предшественники тромбоцитов, мегакариоциты, которые тоже происходят от мезобластов.

После образования первых кровеносных сосудов мезенхима уже состоит из двух частей: кровеносного русла с жидким содержимым, в котором взвешены свободные кровяные клетки, и окружающий мезенхимы синцитиального строения, в которой также имеются подвижные клетки.

Первичные гемогистиобласты (мезобласты), дифференцирующие в кровяных островках, представляют собой довольно крупные клетки округлой формы с базофильной цитоплазмой и ядром, в котором хорошо заметные крупные глыбки хроматина. Эти клетки совершают амебоидные движения. Первичные кровяные клетки усиленно размножаются митотически, и значительное большинство их превращается в первичные эритробласты – мегалобласты.

Количество первичных эритробластов, продолжающих размножаться митотически, все время увеличивается, но одновременно с размножением нарастает пиктонизация ядра и первичные эритробласты, теряя ядро, превращаются в первичные крупные эритроциты – мегалоциты.

Однако некоторая часть первичных клеток остается в недиффиренцированном состоянии и дает начало гемоцитобластам – родоначальным элементам всех последующих кровяных клеток.

Из гемоцитобластов еще в сосудах желточного поля развиваются вторичные (окончательные) эритробласты, которые впоследствии синтезируют гемоглобин и становятся окончательными, или вторичными, нормобластами. В кровяных островках формируются сосудистые каналы, объединяющиеся в конечном счете в сеть кровеносных сосудов. Эта сеть примитивных кровеносных сосудов на ранних этапах содержит первичные эритробласты и гемоцитобласты,а на более поздних – зрелые эритробласты и эритроциты.

Развитие эритроцитов в раннем эмбриональной периоде характеризуется тем, что оно протекает внутри образующихся сосудов. Гранулоциты образуются из гемобластов, располагающихся вокруг, сосудов. На этом заканчивается ангиобластический период кроветворения. Желточный мешок на 4 – 5-й неделе подвергается атрофии и кроветворная функция сосудов постепенно прекращается.

С этого времени начинается собственно эмбриональное кроветворение: местом образования эритроцитов и лейкоцитов становятся печень, костный мозг, лимфатические узлы.

У созревающего эмбриона и в дальнейшей постнатальной жизни развитие гемоцитобластов и эритробластов из эндотелия сосудов уже не происходит. Кровообразование имеет место в ретикулярной адвентиции, где гистиоциты превращаются в эритробласты.

Эмбриональная мезенхима. Дополнительную роль в раннем эмбриональном гемопоэзе непосредственно в полости тела играют первичные мезенхимные клетки, особенно в районе передней прекардиальной мезенхимы. Малая часть мезенхимных клеток развивается в эритробласты, мегакариоциты, гранулоциты и фагоцитирующие клетки, аналогичные соответствующим клеткам взрослых. Количество этих клеток невелико, и больших разрастаний клеток крови, подобных кроветворным островкам желточного мешка, в мезенхиме полости тела не формируется. Стволовые клетки, располагающиеся среди этих гемопоэтических клеток (вне желточного мешка), вероятно, играют главную роль в генерации последующих поколений гемопоэтических клеток у плода и в постнатальном периоде, хотя относительный вклад первичных стволовых клеток, находящихся в желточном мешке и вне его, в более поздний гемопоэз пока не ясен.

Кроветворение в печени. У эмбриона (приблизительно 3 – 4-й неделе жизни) закладывается печень путем всасывания железистого эпителия двенадцатиперстной кишки в мезенхимную ткань.

У человека, начиная примерно со стадии 12 мм эмбриона (возраст 6 нед), гемопоэз постепенно перемещается в печень. Печень скоро становится основным местом гемопоэза и является активной в этом отношении до момента рождения. Поскольку эндотермальные тяжи печени формируются в поперечные перегородки, они сталкиваются с блуждающими мезенхимными клетками с морфологией лимфоцитов. Эти маленькие круглые лимфоидные клетки, называемые лимфоцитоидными блуждающими клетками, в последствии улавливаются между первичными печеночными эндотермальными тяжами и эндотелиальными клетками врастающих капилляров. Они образуют гемоцитобласты, подобные таковым в желточном мешке. Эти гемоцитобласты вскоре формируют очаги гемопоэза, аналогичные кровяным островкам желточного мешка, где вторичные эритробласты образуются в больших количествах. Вторичные эритробласты впоследствии делятся и дифференцируются в зрелые эритроциты, при этом происходят активация синтеза гемоглобина и потеря клеточного ядра. Хотя зрелые эритроциты обнаруживаются в печени эмбриона уже в возрасте 6 нед, в значимом количестве они появляются в циркуляции гораздо позднее. Таким образом, к четвертому месяцу жизни плода большинство циркулирующих эритроцитов представлено вторичными зрелыми формами. Мегакариоциты также, вероятно, образуются из гемоцитобластов в печени эмбриона и плода. В эмбриональной печени находят гранулоцитарные клетки, но развиваются они, видимо, не из гемоцитобластов, а непосредственно из блуждающих лимфоцитоидных клеток.

У человека кроветворение в печени прекращается обычно к концу внутриутробного периода, и тогда костный мозг остается единственным органом, где происходит эритро- и миелопоэз. На 5-м месяце внутриутробной жизни в связи с накоплением в печени плода гемопоэтических веществ, поступающих из материнского организма, мегалобластическое кроветворение окончательно сменяется нормобластическим.

Кроветворение в костном мозгу. В конце 3-го месяца жизни эмбриона закладываются одновременно костный мозг и селезенка.

Эмбриональный костный мозг и миелопоэз. Различные кости у эмбриона образуются не одновременно. Раньше других – длинные кости добавочного скелета. Первоначально формируется хрящевая модель каждой кости. Центральное ядро диафиза впоследствии оссифицируется, и вскоре вслед за врастанием мезенхимных клеток из периоста развивается область костной резорбции. Процесс движения мезенхимных клеток сопровождается врастанием внутрь капилляров. Количество мезенхимных клеток продолжает увеличиваться за счет непрерывного притока новых клеток, а также делением тех, которые уже находятся внутри недавно сформировавшейся костномозговой полости. Они нарабатывают неклеточный материал, или матрикс, заполняющий развивающуюся полость кости. Из этих ранних костномозговых мезенхимных клеток образуются клетки, морфологически сходные с гемоцитобластами печени и желточного мешка. Аналогично последним, они дают начало мегакариоцитам и эритроидным клеткам, а также миелоидным, включая нейтрофилы, базофилы и эозинофилы. Эмбриональный костный мозг заметно отличается от центров более раннего развития гемопоэза тем, что образование миелоидных клеток идет здесь особенно энергично и доминирует в гемопоэзе. Процесс формирования ранних миелоидных клеток, или миелопоэз, начинается в центральной части костномозговой полости и распространяется оттуда, чтобы в конечном счете захватить всю полость кости. Эритропоэз в эмбриональном костном мозге развивается немного позже и в основном смешивается с процессом миелопоэза, так что среди большинства созревающих клеток миелоидной линии можно наблюдать малые очаги эритропоэза. После рождения у человека гемопоэз в печени прекращается, но продолжается в костном мозге всю оставшуюся жизнь.

Лимфопоэз. Лимфоидные элементы в организме зародышей позвоночных появляются позднее эритроцитов и гранулоцитов. Первые зачатки лимфатических узлов возникают в области шейных лимфатических мешков. В самом раннем периоде (у человеческого зародыша около 3 месяцев) образование лимфоцитов происходит следующим образом. В мезенхиме стенки лимфатического мешка начинают обособляться подвижные гемогистиобласты прямо из мезенхимного синцития. Последний преобразуется в ретикулярную кровь, в петлях которой накапливаются различные свободные элементы: гемогистиобласты, гемоцитобласты, макрофаги и лимфоциты.

На ранних стадиях развития зачатков лимфатических узлов в них наблюдается присутствие эритробластов и миелоидных элементов, однако размножение этих форм быстро подавляется образованием лимфоцитов.

Эмбриональный тимус развивается как производное третьего жаберного кармана. Тимический эпителий заполняется блуждающими мезенхимальными клетками, которые начинают быстро размножаться и деффиринцироваться в димфоциты. Одновременно в тимусе формируется незначительное количество эритроидных и миелоидных клеток, но преобладает процесс лимфопоеза. Лимфоциты образующиеся в этом органе, представляют собой особый класс лимфоцитов со специальной функцией – участие в клеточном иммунитете.

Селезенка. В петлях пульпы заложены крупные клетки ретикулярного происхождения. Между петлями ретикулярной ткани пульпы проходят венозные синусы с активным эндотелием. Развитие лимфатических очагов в селезенке происходит позднее: вокруг мелких артерий из адвентициальной ткани и периваскулярной мезенхимы развивается ретикулярная аденоидная ткань с большим количеством лимфоцитов в ее петлях (зачатки лимфатических фолликулов).

Костный мозг. Красный костный мозг составляет 50% общей массы всей костномозговой субстанции, включающей жировой костный мозг, и по всему весу соответствует примерно весу наибольшего органа человека – печени (1300 – 2000 г).

У детей в костях преобладает красный костный мозг; начиная с 7 лет в диафизах длинных костей появляется жировой костный мозг. С 20 лет кроветворный красный костный мозг ограничивается эпифизами длинных костей, короткими и губчатыми костями. В старости в связи с развитием возрастного остеосклероза красный костный мозг местами замещается желтым (жировым) костным мозгом.

Костномозговая ткань. Костномозговая ткань представляет собой нежно-петлистую сеть, состоящею из разветвляющихся ретикулярных клеток, анастомозирующих между собой при помощи тончайших коллагеновых фибрилл; в петлях этой сети содержатся костномозговые элементы, а также жировые клетки. Ретикулярная сеть (строма костного мозга) более выражена в жировом костном мозгу; она особенно заметна при патологических состояниях, сопровождающихся атрофией кроветворной ткани и пролиферацией элементов крови.

Очень богатая кровеносная система костного мозга является замкнутой в том смысле, что непосредственного смывания кроветворной паренхимы кровью не происходит. Это в нормальных условиях препятствует выхождению незрелых клеточных элементов в периферическую кровь.

Среди ретикулярных элементов костного мозга различают следующие формы.

1. Недифференцированная клетка, малая лимфоидно-ретикулярная клетка, имеющая характерную грушевидную, хвостатую или веретенообразную форму, отрываясь от ретикулярного синцития, морфологически трудно отличима от узкопротоплазменных лимфоцитов.

2. Большая лимфоидно-ретикулярная клетка – молодая, функционально активная клетка, встречающаяся большей частью при регенераторных процессах.

3. Фагоцитирующая большая ретикулярная клетка – макрофаг. Клетка эта неправильной формы, с широкой светло-голубой цитоплазмой и малым, круглым, эксцентрически расположенным ядром. Она содержит азурофильные зерна, фагоцитированные ядра, эритроциты (эритрофаг) и глыбки пигмента (пигментофаг), жировые капли (липофаг) и т. д.

4. Костномозговая жировая клетка. Жировая клетка, происходя из ретикулярной, может при потере ею жира возвращаться в первоначальное состояние и вновь получать свойственные ретикулярной клетки потенции, в частности и способность продуцировать элементы крови. Клинические наблюдения подтверждают тот факт, что очень бедный миелоидными элементами, но богатый жировыми клетками костный мозг сохраняет способность к физиологической регенерации.

5. Плазматическая клетка, плазмоцит. Плазматические клетки встречаются в нормальном костномозговом пунктате в незначительном количестве, составляя, по данным разных авторов, от 0,1 до 3%.

О плазматических клетках будет сказано ниже, в последующих лекциях.

 

Таким образом, во всех гемопоэтических органах эмбриона и плода происходят тождественные процессы. Циркулирующие первичные гемопоэтические стволовые клетки расселяются в специфической тканевой нише способом, который до конца еще не понят. Там они дифференцируются в клетки, распознаваемые как гемопоетические предшественники. Эти эмбриональные гемопоэтические предшественники, вероятно, способны к мультилинейной дифференцировке, но в каждом конкретном месте процесс гемопоэза может быть нацелен на формирование определенной линии клеток, возможно, под влиянием локального микроокружения. Различные очаги эмбрионального гемопоэза активны только на соответствующих этапах развития. За этой активацией следует программированая инволюция. Исключение составляет костный мозг, который сохраняется как основной центр гемопоэза у взрослых. Лимфатические узлы, селезенка, тимус и другие лимфоидные ткани продолжают выполнять лимфопоэтическую функцию и у взрослого человека.

 

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ: КЛИНИЧЕСКАЯ ЛАБОРАТОРНАЯ ДИАГНОСТИКА

НАЦИОНАЛЬНЫЙ ФАРМАЦЕВТИЧЕСКИЙ УНИВЕРСИТЕТ... О И Залюбовская О Н Литвинова И В Киреев В В Зленко Л В Карабут...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гемопоэз у эмбриона и плода

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Организация труда персонала лаборатории.
Большинство лабораторий являются отделениями медицинских учреждений и организуются в соответствии с их структурой. Тип и мощность лаборатории зависят от профиля и мощности учреждения в состав котор

Персонал.
В лаборатории работают специалисты с высшим и средним медицинским образованием, инженерно-технический и вспомогательный персонал. К работе в лабораториях допускаются в качестве лаборантов с высшим

Обязанности лаборанта
Общие положения § на должность лаборанта назначают специалиста со средним медицинским образованием, который имеет навыки выполнения лабораторных исследований; § назначение и уволь

Помещение
Состав помещений и их площадь определяется утвержденными строительными нормами и правилами в зависимости от количества анализов, выполняемых лабораторией в день. Для каждого сотрудника, занимающего

Санитарно-протиэпидемический режим в клинико-диагностической лаборатории
Санитарно-протиэпидемический режим – это комплекс организационных, санитарно-профилактических и протиэпидемических мероприятий, которые предотвращают возникновение внутрибольничной инфекции.

Охрана труда и техника безопасности
Лаборант работает согласно установленному в лаборатории режиму работы. Он должен помнить о том, что исследуемый материал может быть заразным, поэтому лаборант должен работать в спецодежде, резиновы

Подготовка больного к общеклиническим исследованиям
К проведению лабораторных исследований больных готовят средние медицинские работники стационаров и поликлиник. Для правильной подготовки больного и транспортировки материала лечебные учреждения дол

Правила медицинской этики и деонтологии во время работы в клинико-диагностической лаборатории
Условием успешной работы фельдшера-лаборанта является любовь к своей профессии, профессии медицинского работника. Целью его работы является помощь врачу в постановке диагноза, поэтому фельдшер-лабо

Автоматизация диагностических лабораторий
В настоящее время ни одна хорошо организованная и эффективная лаборатория не может обойтись без компьютерной базы и информационных систем. Важной составляющей лабораторной информационной системы яв

Определение системы крови и ее функций
Система крови – это единая система кроветворных органов и крови, обеспечивающая образование форменных элементов крови, транспортную, защитную, регуляторную и другие функ

Воспроизводство эритроцитов
Из трех типов форменных элементов крови эритроциты – наиболее многочисленный, их количество превосходит число лейкоцитов примерно в 1000 раз, а кровяных пластинок в 100 раз. Процесс воспроизводства

Структура и функции эритроцитов
Структура зрелого эритроцита хорошо подходит для выполнения его основной функции: переноса кислорода от легких к тканям и переноса углекислого газа от тканей к легким. Главное звено этой функции –

Структура и функции гемоглобина
Гемоглобин – это пигмент эритроцитов, переносящий кислород и обусловливающий цвет крови. Молекула гемоглобина состоит из 4 сложенных цепей аминокислот. Вместе они формируют бел

Биосинтез гемоглобина
Биосинтез гемоглобина осуществляется путем синхронной продукции гема и глобиновых цепей в эритроидных клетках костного мозга и их сочетания с образованием законченной молекулы.

Транспорт кислорода гемоглобином
Cвойство гемоглобина связывать кислород определяется тем, что в центре каждого из четырех гемов находится по атому железа. Молекулы кислорода формируют слабую неполярную связь с атомами железа. Про

Нормальное разрушение эритроцитов
Примерно после 120 дней жизни эритроциты теряют жизнеспособность и удаляются из крови ретикулоэндотелиальной системой, когда кровь проходит через костный мозг, селезенку и печень. В течении этого в

Клиническая оценка показателей красной крови
Среднее значение и пределы нормальных колебаний основных показателей красной крови у взрослого человека представлены в таблице 3. Таблица 3Показатели красной крови у здоро

Специфические факторы (витамины) эритропоэза
Для нормального течения процессов гемопоэза важнейшее значение имеют специфические факторы кроветворения, относящиеся к витаминам группы В. Наиболее выраженными стимулирующими свойствами по отношен

Теория кроветворения. Лейкопоэз
На раннем этапе дифференцировки образуются, как мы уже говорили в предыдущей лекции, из полипатентной стволовой клетки две так называемые коммитированные клетки, одна их которых является предшестве

Физиологическая регуляция лейкопоэза
Вся система кроветворения тесно связана с целостным организмом и находится под сложным регулирующим влиянием нервно-гуморальных и эндокринных факторов. Основное значение в процессе кроветворения в

Нормальная физиология гранулоцитов
  Гранулоциты – клетки, в цитоплазме которых обнаруживается зернистость, специфическая для определенного вида клеток: различают нейтрофильную, эозинофильную и базофильную зернистость.

Нормальная физиология нейтрофилов
Составляя 40-70% всех лейкоцитов, нейтрофилы являются их самой многочисленной разновидностью. Зрелый нейтрофил, имеет сегментированное ядро и темно-фиолетовые гранулы в цитоплазме. Нейтроф

Нормальная физиология эозинофилов
Эозинофилы похожи на нейтрофилы по морфологии и функции, хотя их значительно меньше - всего 0,2-5% от общего числа лейкоцитов. Ядро у эзинофила, как и у нейтрофила, сегментированное, но вместо 3-4

Нормальная физиология базофилов
Базофилы – самая малочисленная часть гранулоцитов в периферической крови (0,5–1% всех лейкоцитов). Их дольчатое ядро маскируется крупными темно-синими гранулами. Базофилы мигрируют в ткани, где соз

Нормальная физиология моноцитов
Моноцит имеет несегментированное округлое или овальное ядро и цитоплазму, обычно лишенную гранул. После короткого периода циркуляции в крови (20-40 ч) эти клетки мигрируют в ткани, где созревают в

Сущность фагоцитоза
Фагоцитоз – сложный процесс, изучение которого было начато сто лет назад И.И. Мечниковым и продолжается до сего времени. Процесс фагоцитоза можно разделить на четыре большие фазы:

Нормальная физиология лимфоцитов
Лимфоциты являются главными клеточными элементами иммунной системы организма. Лимфоциты составляют 20-40% от общего числа лейкоцитов, являясь по численности их второй разновидностью. Как и другие ф

Плазмоцитопоэз. Морфофизиология плазмоцитов
Плазмоциты – эффекторные клетки, образуются из В-лимфоцитов, вырабатывают особые защитные белки – иммуноглобулины (антитела), которые поступают в кровь. У здорового человека плазмоциты при

Морфофизиология мегакариоцитов и тромбоцитопоэз
  Гигантские клетки костного мозга – мегакариоциты – являются родоначальниками кровяных пластинок. Происхождение тромбоцитов из мегакариоцитов костного мозга убедительно демонстрирует

Методы определения тромбоцитов
Определение количества кровяных пластинок в 1 л крови в обычной лабораторной практике производится по методу Фонио, основанному на сравнительном подсчете в мазке крови (разбавленном для предотвраще

Особенности структуры, формы, величины тромбоцитов
  Показано существование в тромбоцитах трех главных структурных зон: периферической (трехслойная мембрана, содержащая рецепторы для коллагена, АДФ, серотонина, эпинефрина, тромбина, ф

Тромбоцитоз, тромбоцитопения. Причины
  Тромбоцитоз – увеличение числа тромбоцитов выше, чем 400·109 в 1 л крови, бывает первичным (является результатом первичной пролиферации мегакариоцито

Сосудисто-тромбоцитарный гемостаз
Гемостаз – один из важнейших гемостатических механизмов, направленных на поддержание целостности сосудистой стенки, предупреждение и остановку кровотечения. Система ге

Морфологического процесса
Постоянство морфологического состава крови обеспечивается состоянием динамического равновесия процессов кровообразования и кроворазрушения. Изменения морфологического состава крови в физиологически

Изменения формы
Эритроциты могут терять нормальную округлую форму, становясь вытянутыми, звездчатыми, грушевидными и т.д. Изменение формы эритроцитов называется пойкилоцитоз. Лептоциты

Изменение окраски
Окраска эритроцитов зависит от концентрации в них гемоглобина, формы клетки и присутствия базофильной субстанции (базофильная субстанция, состоящая из РНК и протопорфирина, присуща молодым эритроид

Дегенератиные изменения лейкоцитов
Важным в гематологической диагностики является изучение так называемой базофильной, дегенеративной или токсической зернистости нейтрофилов, а также дегенеративных изменений лейкоцитов. Изу

Лейкоцитов и лейкоцитарной формулы. Причины лейкоцитоза
Общее количество лейкоцитов у здорового взрослого человека находится в пределах 4000-9000 в 1 мкл или в 4·109-9·109/л. Возрастные изменения числа лейкоцитов и лейкоцитарной фо

Главных типов лейкозов
Лейкозы – группа злокачественных заболеваний костного мозга, которые характеризуются нерегулируемой пролиферацией одного вида (клона) незрелых клеток и подавлением продукции но

Лейкоцитарная формула в норме и при патологии
Лейкоцитарная формула – процентное отношение различных видов лейкоцитов (при подсчете 100 клеток), процентное и абсолютное значение различных лейкоцитов и их морфологическое ос

Нейтрофилия. Основные причины и клинические формы
Нейтрофилез (нейтрофилия) – увеличение содержания нейтрофилов выше 8·109/л крови. Нейтрофильный лейкоцитоз сопровождает обычно бактериальные инфекции, интоксикации,

Эозинофилия. Основные причины и клинические формы
  Эозинофилия – повышение уровня эозинофилов крови выше 0,4·109/л. Эозинофилия сопутствует аллергии, внедрению чужеродных белков и других продуктов бел

Моноцитоз. Причины и клинические формы
Моноцитоз – увеличение числа моноцитов в крови более 0,8·109/л у взрослого. Моноцитоз является признаком хронического моноцитарного лейкоза, но может отмечаться и пр

Лимфоцитоз. Основные причины и клинические формы
Лимфоцитоз – увеличение содержания лимфоцитов выше 4,0·109/л в крови. Лимфоцитоз сопровождает вирусные, некоторые хронические бактериальные инфекции, является характ

Лейкопения. Сущность понятия. Основные причины лейкопении
Лейкопения – уменьшение числа лейкоцитов крови ниже 4,0·109/л Понижение числа лейкоцитов (лейкопения) может быть вследствие следующих причин:

Нейтропения. Основные причины и клинические формы
Нейтропения – снижение содержания нейтрофилов в крови ниже 1,5·109/л. Причины, приводящие к нейтропении, перечислены в таблице 13. Нейтропения при одних инф

Агранулоцитоз. Сущность понятия. Виды
  Агранулоцитоз – резкое уменьшение числа гранулоцитов в периферической крови вплоть до полного их исчезновения, ведущее к снижению сопротивляемости организма к и

Причины лимфоцитопении
§ СПИД. Вирус иммунодефицита человека, который вызывает СПИД, проявляет свое опустошительное действие, избирательно поражая Т-лимфоциты. Вирус размножается внутри T-лимфоцитов, вызывая гибель клето

Клинические следствия изменения количества лейкоцитов
Увеличение числа лейкоцитов – защитная реакция против повреждения, инфекции, воспаления. Лейкоцитоз, таким образом, является физиологическим и обычно не имеет последствий. В некоторых случаях лейко

Моноцитарно-лимфатического типа
1. Монолимфатическая реакция крови. Этиологическая основа: болезнь Филатова – инфекционный мононуклеоз – острое вирусное инфекционное заболевание, в основе которого лежит гиперплазия ретикулярной т

Лейкемоидные реакции миелоидного типа
В морфологическом отношении лейкемоидные реакции миелоидного типа характеризуются картиной крови, напоминающей до некоторой степени таковую при хроническом миелолейкозе. Обычно отмечается умеренный

Лейкемоидные реакции при шоке.
В эту группу входят лейкемоидные реакции, возникающие под влиянием раневого шока, операционного шока, травматические лейкемоидные реакции и т.п. Лейкемоидные реакции на почве инток

Лейкемоидные реакции эозинофильного типа
Лейкемоидные реакции эозинофильного типа привлекают большое внимание врачей. Они являются принадлежностью в основном следующих групп заболеваний. Гельминтозы с тканевой локализацией парази

Гематокрит. Определения понятия. Заболевания и состояния, сопровождающиеся изменением гематокрита
Гематокрит (Ht) – объемная фракция эритроцитов в цельной крови (соотношение объемов эритроцитов и плазмы), которая зависит от количества и объема эритроцитов. В современных гематологических счетчик

Средний объем эритроцитов. Определение. Заболевания и состояния, сопровождающиеся изменением этого показателя
MCV (mean corpuscular volume) — средний корпускулярный объем — средняя величина объема эритроцитов, измеряемая в фемтолитрах (fl) или кубических микрометрах. В гематологических анализаторах MCV выч

Средняя концентрация гемоглобина в эритроците. Определение. Заболевания и состояния, сопровождающиеся изменением этого показателя
  Средняя концентрация гемоглобина в эритроците – показатель насыщенности их гемоглобином. Нормальные величины показателя приведены в табл. 19. В гематологических анализаторах показат

Цветовой показатель
Цветовой показатель (ЦП) отражает относительное содержание гемоглобина в эритроците. По величине ЦП анемии принято делить на гипо- (ЦП < 0,8), нормо- (ЦП 0,85—1,05) и гиперхромные (ЦП >1,1)•

Причины возникновения
LЕ-феномен (lupus erythematosus) наблюдается в процессе инкубации периферической крови больных системной красной волчанкой (СКВ) и некоторых других заболеваний аутоиммунной природы. Наиболее распро

Патофизиологические механизмы
Скорость, с которой оседают эритроциты, представляет собой комплексный феномен, не до конца понятный и теперь. Эритроциты опускаются на дно капилляра, так как имеют большую плотность, чем плазма, в

Клиническая оценка
Определение СОЭ – один из наименее специфических лабораторных тестов. Другими словами, как повышение температуры или пульса, увеличение СОЭ встречается при многих различных заболеваниях. Изменение

Воспалительные заболевания
Воспалительный ответ на повреждение ткани проявляется аномальным повышением синтеза белков плазмы, включая фибриноген, что провоцирует формирование" монетных столбиков" из эритроцитов и п

Инфекционные заболевания
Все инфекционные заболевания связаны с усилением иммунного ответа и повышенной продукцией иммуноглобулинов (антител). Увеличение концентрации иммуноглобулинов в крови повышает тенденцию к формирова

Онкологические заболевания
Многие больные, страдающие раком различных локализаций, имеют высокую СОЭ. Однако этот показатель повышен не у всех пациентов, и его не используют в диагностике рака. При отсутствии инфекционного и

Другие причины повышения СОЭ
Инфаркт миокарда вызывает повреждение мышечной ткани сердца. Последующий воспалительный ответ на это повреждение включает повышенную продукцию белков плазмы (фибриногена), что вызывает агрегацию эр

Нормальная физиология гемостаза.
Последовательность событий, которые ведут к формированию стабильного фибринового сгустка и прекращению кровотечения из поврежденного сосуда, показана на рис. 3. Снижение кровотока в повреж

Факторы свертывания крови
В процессе агрегации тромбоцитов у стенки сосуда, благодаря работе свертывающего каскада, образуется фибрин. Это серия реакций, в которой белки, находящиеся в плазме и называемые факторами,

Внутренний путь
  ФакторХа

Антикоагулянты
Антикоагулянты могут быть как физиологическими, естественно существующими в организме или возникающими в процессе свертывания крови и фибринолиза, так и патологическими (иммунные ингибиторы отдельн

Фибринолиз. Сущность. Факторы, влияющие на фибринолиз
Фибринолиз осуществляется протеолитической ферментной системой крови – плазминоген-плазмин. Превращение плазминогена (неактивный предшественник плазмина) в активную форму происходит с помощью актив

Исследование коагуляционного гемостаза
Наиболее общее представление о коагуляции дает время свертывания цельной крови. Простым и удобным является метод Моравица: на часовое стекло наносят каплю кр

В норме тромбиновое время 14—16с.
Удлинение тромбинового времени может быть связано с выраженной гипофибриногенемией, молекулярными аномалиями фибриногена (см. ниже); избытком в крови гепарина и других антитромбинов; накоплением в

Нормальные показатели 28-32с.
Рептилазовое время оценивают в сопоставлении с тромбиновым временем. Поскольку на коагулирующие свойства рептилазы не влияет гепарин (и другие антитромбины), то неудлиненное рептилазовое время при

Фактор VII (проконвертин)
Активность фактора VII в плазме в норме — 65-135 %. Фактор VII (проконвертин, или конвертин) относится к альфа-2-глобулинам и синтезируется в печени при участии витамина К. В основн

Фактор V (проакцелерин)
Активность фактора V в плазме в норме – 0,5-2,0 кЕД/л, или 60-150%. Фактор V (проакцелерин) — белок, полностью синтезируемый в печени. В отличие от других факторов протромбинового к

Фактор XI (антигемофильный фактор С)
Активность фактора XI в плазме в норме — 65-13 %. Фактор XI – антигемофильный фактор С – гликопротеид. Активная форма этого фактора (ХІа) образуется при участии факторов XIІа, Флетч

Фактор IX (Кристмас-фактор)
Активность фактора IX в плазме в норме — 60-140 %. Фактор IX (Кристмас-фактор, антигемофильный глобулин В) относится к β-глобулинам, принимает активное участие в первой фазе (п

В норме активированное частичное тромбопластиновое время составляет 25-35 с.
Причины, приводящие к удлинению АЧТВ: § нарушение показателей АЧТВ при нормальном протромбиновом и тромбиновом времени наблюдается только при дефиците или ингибиции фактор

Плазминоген
Содержание плазминогена в плазме в норме составляет 80—120 %. Плазминоген (профибринолизин) – неактивный предшественник фермента плазмина (фибринолизина). Определение плазминогена я

Альфа-2-антиплазмин (альфа-2-АП)
Содержание альфа-2-АП в плазме в норме составляет 80—120 %. Альфа-2-АП – основной быстродействующий ингибитор плазмина. Он подавляет фибринолитическую и эстеразную активность практи

D-димер
Содержание D-димера в плазме в норме меньше 0,5 мкг/мл. При расщеплении волокон фибрина образуются фрагменты – D-димеры. При определении с помощью специфических антисывороток содерж

Антитромбин III (AT III)
Содержание AT III в плазме в норме – 80-120 %. AT III — гликопротеид, наиболее важный естественный ингибитор свертывания крови; ингибирует тромбин и ряд активированных факторов свер

Гепарин в плазме
Активность гепарина в плазме в норме – 0,24-0,6 кЕД/л. Гепарин является сульфатированным полисахаридом, синтезируется в тучных клетках, не проникает через плаценту. В большом количе

Протеин С в плазме
Содержание протеина С в плазме в норме — 70-130%. Протеин С – витамин-К-зависимый гликопротеид плазмы. Синтезируется печенью в виде неактивного профермента, который под влиянием комплекса

Исследование микроциркуляторно-тромбоцитарного гемостаза
Наиболее общими тестами, отражающими состояние сосудистотромбоцитарного гемостаза, являются определение длительности кровотечения по Дуке и ретракция кровяного сгустка. Уколочная проба

Агрегация тромбоцитов с АДФ в плазме
Процессы агрегации изучают с помощью агрегометра, отражающего ход агрегации графически в виде кривой; в качестве стимулятора агрегации служит АДФ. До добавления проагреганта (АДФ) возможны

Агрегация тромбоцитов с арахидоновой кислотой в плазме
Арахидоновая кислота является природным агонистом, причем ее действие опосредовано эффектами простагландинов G2 и Н2 и тромбоксана А2 и включает активацию как фосфо

Агрегация тромбоцитов с ристоцетином в плазме
Активность фактора Виллебранда в норме – 58-166 %. Фактор VIII свертывания плазмы – антигемофильный глобулин А – циркулирует в крови в виде комплекса из трех субъединиц, обозначаемы

Гемопоэз во взрослом организме
С момента рождения развитие первичных полипотентных стволовых клеток, как уже говорилось рание, миелопоэз происходят в костном мозге, в то время как лимфопоэз – в тимусе, селезенке и лимфатических

Костного мозга и его роль в гемопоэзе
В костном мозге существуют области так называемого гемопоэтического индуктивного микроокружения, которые обеспечивают продукцию эритроцитов, лейкоцитов и тромбоцитов. Их формируют стромаль

Структура, функции и роль селезенки в гемопоэзе
Селезенка размещена в левом верхнем квадранте живота. Она связана с некоторыми другими органами и имеет почечную, панкреатическую и диафрагмальную поверхности. У взрослого человека она весит прибли

Селезенка
  Железистый шар, спрятанный за грохочущим дном желудка под крепкой кривой диафрагмой, толкаемой ударами, передаваемыми сердечным мотором.

Структура, функции лимфоузлов, их роль в гемопоэзе
Лимфатические узлы располагаются по ходу лимфатических сосудов и представляют собой маленькие овальные или почкообразные образования длиной 0,1-2,5 см. Они соединены с системой лимфоциркуляции аффе

Морфофункциональные особенности тимуса
(вилочковой железы) и его роль в гемопоэзе Тимус находится в переднем средостении. Эта двудольная железа при рождении весит 10-15 г, быстро увеличивается до 20-40 г и зате

Нормальная миелограмма. Сущность понятия, приготовление и окраска мазков, значение исследования
Миелограмма — процентное соотношение клеточных элементов в мазках, приготовленных из пунктатов костного мозга. Костный мозг содержит две группы клеток: клетки ретикулярной стромы (фибробласты, осте

Значение изменений миелограммы.
Уменьшение содержания миелокариоцитов наблюдают при гипопластических процессах различной этиологии, воздействии на организм человека ионизирующего излучения, некоторых химических и лекарстве

Сущность, нормальные показатели
Подсчет лимфаденограммы и спленограммы осуществляют после пункции соответствующего органа в сухих окрашенных мазках. Подсчет производят по обычному правилу, как было указано при подсчете миелограмм

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги