Особенности структуры, формы, величины тромбоцитов

 

Показано существование в тромбоцитах трех главных структурных зон: периферической (трехслойная мембрана, содержащая рецепторы для коллагена, АДФ, серотонина, эпинефрина, тромбина, фактора Виллебранда; на внешней стороне мембраны расположен аморфный слой из кислых мукополисахаридов и адсорбированных факторов свертывания плазмы крови), зоны "золь-гель" (микротубулы – каналикулярный комплекс, часть которого открыта, т. е. имеет выходы на наружной мембране; микрофиламенты, содержащие контрактильный протеин "тромбостенин", участвующий, как считают, в поддержании дискообразной формы пластинок; от его свойств зависит ретракция кровяного сгустка) и зона органелл (гликогеновые гранулы, митохондрии, α-гранулы, плотные тела, аппарат Гольджи). Гранулы высокой плотности содержат серотонин, адреналин (адсорбируются из плазмы через каналикулярную систему), кальций, неметаболические адениннуклеотиды (АДФ, АТФ), 4 фактор тромбоцитов (антигепариновый) и, возможно, гранулярную часть 3 фактора тромбоцитов; α-гранулы содержат гидролитические ферменты (кислую фосфатазу, β-глюкуронидазу, катепсины), фибриноген тромбоцитов. Для поддержания структуры и функции тромбоцитов необходима энергия, которая поставляется АТФ в процессе гликолиза, а также окислительного фосфорилирования.

В норме 1/3 вышедших из костного мозга тромбоцитов депонируется в селезенке, остальная часть циркулирует в крови, выполняет свои функции в процессах свертывания и регуляции проницаемости сосудистой стенки, подвергается разрушению под влиянием различных причин и в результате старения. Тромбоциты максимально живут 10-12 дней, средняя продолжительность их жизни составляет 6,9±0,3 сут. Ежедневно обновляется 12-20 % общей массы кровяных пластинок в организме. Количество кровяных пластинок в периферической крови у одного и того же индивидуума подвержено большим колебаниям, зависящим от состояния вегетативной нервной системы и сосудистого тонуса.

В патологических условиях кровяные пластинки принимают неправильную форму – овальную, грушевидную, колбасовидную, в виде теннисной ракетки и т.п.

По величине различают: микро-, нормо-, макро- и мегатромбоциты.

В нормальных условиях большинство (90-92%, по данным разных авторов) кровяных пластинок имеет диаметр от 1,5 до 3 мкм, в среднем 2-2,5 мкм. К микропластинкам относятся формы,имеющие диаметр менее 1,5-1 мкм, к макроформам – пластинки с диаметром свыше 3-до 5 мкм; мегатромбоциты имеют диаметр в 6-10 мкм, т.е. равный и даже превосходящий размер нормальных эритроцитов.

На основании статистически достоверных данных выделяют, в зависимости от величины диаметра, четыре основные группы кровяных пластинок, составляющих нормальную тромбоцитарную формулу.

По степени зрелости различают (Jurgens и Graupner) юные, зрелые и старые кровяные пластинки. Кроме того, имеются не всегда встречающиеся в крови формы раздражения и дегенеративные формы.

Юные формы по сравнению со зрелыми формами характеризуются нерезкими контурами, несколько большей величиной, составляющей 2.5-5 мкм в диаметре, выраженной базофилией гиаломера и нежной, необильной азурофильной зернистостью. Зрелые формы – наиболее типичные, округлой или овальной формы, с ровными контурами; характеризуются четким разделением на грануломер с хорошо выраженной, красно-фиолетового (при окраске по Романовскому) цвета зернистостью, и гиаломер смешанного голубовато-розового цвета; средняя величина 2-4 мкм. Старые формы характеризуются насыщенно фиолетовой окраской грануломера, занимающего всю центральную часть кровяной пластинки, и светло-розовой окраской узкого гиаломера по периферии пластинки. Пластинки как бы сморщены, диаметр их 0.5-2.5 мкм. Формы раздражения отличаются большим полиморфизмом и значительной величиной. Встречаются гигантские колбасовидные, хвостатые и тому подобные пластинки, с длинным диаметром – 7-9 и даже 12 мкм. Дегенеративные формы или не содержат зернистости (гиалиновые, голубые пластинки), или имеют темно-фиолетовую зернистость в виде комков или мелких осколков (пылинок); встречаются и вакуолизированные пластинки.

Анализ представленных тромбоцитограмм обнаруживает чрезвычайную вариабельность в распределении различных форм тромбоцитов. Сами пределы колебаний "нормальных" процентных соотношений различных форм кровяных пластинок у одних и тех же авторов настолько различны, что на основании этих данных трудно вывести "нормальную" тромбоцитограмму. Можно только отметить, что по данным различных отечественных и зарубежных авторов, большинство (65-98%) кровяных пластинок относится к зрелым формам; прочие формы: юные, старые, атипические – формы раздражения, дегенеративные, вакуолизированные – в нормальных физиологических условиях либо совершенно не встречаются, либо отмечаются в единичных экземплярах.

"Помолодение" тромбоцитограммы или сдвиг влево тромбоцитарной формулы с появлением большего числа юных форм наблюдается при состояниях повышенной регенерации костного мозга, в частности в связи с кровопотерями, гемолитическим кризом, после спленэктомии и т д.

"Постарение" тромбоцитограммы или сдвиг вправо тромбоцитарной формулы с появлением большого числа старых форм рядом авторов рассматривается как признак ракового заболевания.

Формы раздражения присущи тромбоцитопеническим состояниям (болезнь Вергольфа). При миелопроферативных заболеваниях (хронический миелолейкоз в стадии обостения, мегакариоцитарный лейкоз, остеомиелосклероз, полицитемия) в периферической крови наряду с формами раздражения встречаются "тромбобласты ", представляющие собой фрагменты ядер мегакариоцитов, окруженные цитоплазмой с отшнуровывающимися пластинками.

Новые данные в отношении структуры кровяных пластинок и их морфофизиологии получены при помощи новых методов исследования – фазовоконтрастной и электронной микроскопии.

При рассматривании тромбоцитов в электронном микроскопе они представляются звездчатыми, паукообразными образованиями с нитевидными отростками – псевдоподиями.

При помощи электронной микроскопии удалось установить, что грануломер состоит из многочисленных гранул овальной или круглой формы величиной от 240 Å (= 0.024 мкм до 0.2 мкм Различают α-, β-, γ- и δ-гранулы.

α-Гранулы составляют большую часть гранул грануломера; их считают производными митохондрий, в них содержится фактор 3 пластинок, являющийся липопротеидом.

β-Гранулы относят к митохондриям вследствие наличия в них типичных внутренних структур – крист. Последние хорошо различимы при электронномикроскопическом исследовании ультратонких срезов кровяных пластинок.

γ-Гранулы связывают с так называемым внутриклеточным аппаратом Гольджи. γ-Гранулы морфологически неоднородны, они состоят из пузырьков, вакуолей, канальцев, составляющих подобие эндоплазматической сети.

δ-Гранулы овальной формы, в них содержатся весьма контрастные зерна, являющиеся, по-видимому, компонентами железосодержащего пигмента ферритина.

В настоящее время установлено, что большинство пластиночных факторов свертывания крови локализовано в грануломере.

Гиаломер также неоднороден – он состоит из множества переплетающихся между собой волоконец. Из этих волоконец и образуются отростки и псевдоподии тромбоцитов.

Появление цитоплазматических отростков в кровяных пластинках, представляющихся in vivo в циркулирующей крови в виде кругло-овальных или несколько угловатых образований, свойственно нормальным, активным формам, участвующим в свертывании крови. Появление отростков зависит от свойств стабилизирующей среды; оно замедлено в гепаринизованной крови, в хелатоне (трилоне Б, используемом для лейкоконцентрации) и ускорено в физиологическом растворе (0.85 %) хлористого натрия и цитрате натрия.

Менее активные формы, так называемые формы покоя, сохраняют in vitro кругло-овальную форму, не выпуская отростков.

При дальнейшем наблюдении in vitro кровяные пластики начинают распластываться. При этом площадь каждой взятой в отдельности кровяной пластинки увеличивается во много раз по сравнению с исходными размерами (до 30-40 мкм).

Электронномикроскопические исследования показали, что тромбоциты обладают мембраной толщиной около 45 Å. О роли гиаломера и грануломера высказываются различные мнения. Большинство авторов, изучавших в фазовоконтрастном микроскопе последовательные изменения тромбоцитов в процессе свертывания крови, считают, что грануломер (хромомер) является носителем тромбопластических свойств пластинок, а гиаломер – ретрактильных свойств.

Являясь безъядерными осколками гигантских клеток костного мозга, кровяные пластинки выполняют важнейшие биологические функции, в первую очередь в процессе гемостаза, благодаря содержащимся в них многочисленным ферментам.

Физиологическая активность кровяных пластинок, в первую очередь в процессах гемостаза, связана с содержащимися в них ферментами.

В литературе указывают на существование в кровяных пластинках 49 ферментов.

Благодаря ферментам в тромбоцитах осуществляется процессы как анаэробного (цикл Эмбдена-Мейергофа), так и аэробного (цикл Кребса) гликолиза ("дыхания") и ресинтеза аденозинтрифосфорной кислоты (АТФ) в условиях анаэробиоза. Тромбоциты не в состоянии включать аминокислоты, что говорит об их неспособности к синтезу белка.

В процессе свертывания крови АТФ расщепляется и быстро – в течение 30 мин – исчезает на 80-90%. При отсутствии свертывания крови АТФ держится на том же уровне.

В тромбоцитах обнаружены также эстеразы, кислая фосфатаза, глюкуронидаза, апираза, холинэстераза, протеазы, пероксидазы, амилаза, дипептидаза, фосформоноэстераза, пирофосфатаза и другие ферменты.

Кровяные пластинки человека обладают групповой специфичностью, соответствующей групповой специфичности эритроцитов. Достоверно установлено наличие в тромбоцитах антигенов (агглютиногенов) А, В и D (системы резус). Не исключается возможность того, что указанные антигены адсорбируются кровяными пластинками из плазмы. Групповая специфичность кровяных пластинок (как по системе АВО, так и по системе (резус-фактора) должна быть учитываема при переливаниях тромбоцитной массы.

Поддержание в физиологических условиях нормального количества тромбоцитов в крови возможно благодаря наличию регуляторных механизмов. Гуморальные стимуляторы (тромбопоэтины) и ингибиторы тромбоцитопоэза (тромбоцитопенины) выявлены в эксперементальных и клинических условиях (при тромбоцитопениях различного характера, в крови здоровых лиц), однако относительно их природы, места образования и свойств единого мнения нет. Очевидно роль селезенки в регуляции тромбоцитопоэза, как и гемопоэза вообще.