рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Методы анализа больших систем, факторный анализ

Методы анализа больших систем, факторный анализ - Конспект Лекций, раздел Экономика, УЧЕТ И АУДИТ. Конспект лекций   Данный Параграф Является Заключительным И Более Не Будет Воз...

 

Данный параграф является заключительным и более не будет возможности осветить еще одну особенность методов системного анализа, показать вам еще один путь к достижению профессионального уровня в области управления экономическими системами.

Уже ясно, что ТССА большей частью основывает свои практические методы на платформе математической статистики. Несколько упреждая ваш рабочий учебный план (курс математической статистики — предмет нашего сотрудничества в следующем семестре), обратимся к современным постулатам этой науки.

Общепризнанно, что в наши дни можно выделить три подхода к решению задач, в которых используются статистические данные.

· Алгоритмический подход, при котором мы имеем статистические данные о некотором процессе и по причине слабой изученности процесса его основная характеристика (например, эффективность экономической системы) мы вынуждены сами строить “разумные” правила обработки данных, базируясь на своих собственных представлениях об интересующем нас показателе.

· Аппроксимационный подход, когда у нас есть полное представление о связи данного показателя с имеющимися у нас данными, но неясна природа возникающих ошибок — отклонений от этих представлений.

· Теоретико-вероятностный подход, когда требуется глубокое проникновение в суть процесса для выяснения связи показателя со статистическими данными.

В настоящее время все эти подходы достаточно строго обоснованы научно и “снабжены” апробированными методами практических действий.

Но существуют ситуации, когда нас интересует не один, а несколько показателей процесса и, кроме того, мы подозреваем наличие нескольких, влияющих на процесс,воздействийфакторов, которыеявляются не наблюдаемыми, скрытыми илилатентными.

Наиболее интересным и полезным в плане понимания сущности факторного анализа — метода решения задач в этих ситуациях, является пример использования наблюдений при эксперименте, который ведет природа, Ни о каком планировании здесь не может идти речи — нам приходится довольствоваться пассивным экспериментом.

Удивительно, но и в этих “тяжелых” условиях ТССА предлагает методы выявления таких факторов, отсеивания слабо проявляющих себя, оценки значимости полученных зависимостей показателей работы системы от этих факторов.

Пусть мы провели по n наблюдений за каждым из kизмеряемых показателей эффективности некоторой экономической системы и данные этих наблюдений представили в виде матрицы (таблицы).

 

 

Матрица исходных данных E[n·k]{3-26}

E 11 E12 E1i E1k
E 21 E22 E2i E2k
E j1 Ej2 Eji Ejk
E n1 En2 Eni Enk

 

Пусть мы предполагаем, что на эффективность системы влияют и другие — ненаблюдаемые, но легко интерпретируемые (объяснимые по смыслу, причине и механизму влияния) величины — факторы.

Сразу же сообразим, что чем больше n и чем меньше таких число факторов m(а может их и нет вообще!),тем больше надежда оценить их влияние на интересующий нас показательE.

Столь же легко понять необходимость условияm < k,объяснимогона простом примере аналогии — если мы исследуем некоторые предметы с использованием всех 5 человеческих чувств, то наивно надеяться на обнаружение более пяти “новых”, легко объяснимых, но неизмеряемых признаков у таких предметов, даже если мы “испытаем” очень большое их количество.

Вернемся к исходной матрице наблюдений E[n·k]и отметим, что перед нами, по сути дела, совокупности по n наблюдений над каждой из k случайными величинами E1, E2, … E k. Именно эти величины “подозреваются” в связях друг с другом — или во взаимной коррелированности.

Из рассмотренного ранее метода оценок таких связей следует, что мерой разброса случайной величины Eiслужит ее дисперсия, определяемая суммой квадратов всех зарегистрированных значений этой величины S(Eij)2 и ее средним значением (суммирование ведется по столбцу).

Если мы применим замену переменных в исходной матрице наблюдений, т.е. вместо Ei j будем использовать случайные величины

 

Xij = ,{3-27}

 

то мы преобразуем исходную матрицу в новую

 

X[n·k]{3-28}

X 11 X12 X1i X1k
X 21 X22 X2i X2k
X j1 Xj2 Xji Xjk
X n1 Xn2 Xni Xnk

 

 

Отметим, что все элементы новой матрицы X[n·k] окажутся безразмерными, нормированными величинами и, если некоторое значение Xijсоставит, к примеру,+2, то это будет означать только одно - в строке j наблюдается отклонение от среднего по столбцу i на два среднеквадратичных отклонения (в большую сторону).

Выполнимтеперь следующие операции.

· Просуммируем квадраты всех значений столбца 1 и разделим результат на (n - 1) — мы получим дисперсию (меру разброса) случайной величины X1 , т.е. D1.Повторяя эту операцию, мы найдем таким же образом дисперсии всех наблюдаемых (но уже нормированных) величин.

· Просуммируем произведения соответствующих строк (от j =1 до j = n) для столбцов 1,2 и также разделим на (n -1). То, что мы теперь получим, называется ковариацией C12 случайных величин X1 , X2 и служит мерой их статистической связи.

· Если мы повторим предыдущую процедуру для всех пар столбцов, то в результате получим еще одну, квадратную матрицу C[k·k], которую принято называть ковариационной.

Эта матрица имеет на главной диагонали дисперсии случайных величин Xi, а в качестве остальных элементов — ковариации этих величин ( i=1…k).

Ковариационная матрица C[k·k] {3-29}

D1 C12 C13 C1k
C21 D2 C23 C2k
Cj1 Cj2 Cji Cjk
Cn1 Cn2 Cni Dk

 

Если вспомнить, что связи случайных величин можно описывать не только ковариациями, но и коэффициентами корреляции, то в соответствие матрице {3-29} можно поставить матрицу парных коэффициентов корреляции или корреляционную матрицу

 

R[k·k] {3-30}

 

1 R12 R13 R1k
R21 1 R23 R2k
Rj1 Rj2 Rji Rjk
Rn1 Rn2 Rni 1

в которой на диагонали находятся 1, а внедиагональные элементы являются обычными коэффициентами парной корреляции.

Так вот, пусть мы полагали наблюдаемые переменные Eiнезависящими друг от друга, т.е. ожидалиувидеть матрицуR[k·k]диагональной, с единицамив главной диагонали и нулями в остальных местах. Если теперь это не так, то наши догадки о наличии латентных факторов в какой-то мере получили подтверждение.

Но как убедиться в своей правоте, оценить достоверность нашей гипотезы — о наличии хотя бы одного латентного фактора, как оценить степень его влияния на основные (наблюдаемые) переменные? А если, тем более, таких факторов несколько — то как их проранжировать по степени влияния?

Ответы на такие практические вопросы призван давать факторный анализ. В его основе лежит все тот же “вездесущий” метод статистического моделирования (по образному выражению В.В.Налимова — модель вместо теории).

Дальнейший ход анализа при выяснению таких вопросов зависит от того, какой из матриц мы будем пользоваться. Если матрицей ковариаций C[k·k], то мы имеем дело с методом главных компонент, если же мы пользуемся только матрицей R[k·k],то мы используем метод факторного анализа в его “чистом” виде.

Остается разобраться в главном — что позволяют оба эти метода, в чем их различие и как ими пользоваться. Назначение обоих методов одно и то же — установить сам факт наличия латентных переменных (факторов), и если они обнаружены, то получить количественное описание их влияния на основные переменные Ei.

Ход рассуждений при выполнении поиска главных компонент заключается в следующем. Мы предполагаем наличие некоррели-рованных переменных Zj( j=1…k), каждая из которых представляется нам комбинацией основных переменных (суммирование по i =1…k):

Zj= S Aj i ·Xi{3-31}

и, кроме того, обладает дисперсией, такой что

D(Z1) ³ D(Z2) ³ … ³ D(Zk).

Поиск коэффициентов Aj i(их называют весом j-й компонеты в содержании i-й переменной) сводится к решению матричных уравнений и не представляет особой сложности при использовании компьютерных программ. Но суть метода весьма интересна и на ней стоит задержаться.

Как известно из векторной алгебры, диагональная матрица [2·2] может рассматриваться как описание 2-х точек (точнее — вектора) в двумерном пространстве, а такая же матрица размером [k·k]как описание k точек k-мерного пространства.

Так вот, замена реальных, хотя и нормированных переменных Xiна точно такое же количество переменных Zjозначает не что иное, как поворот kосей многомерного пространства.

“Перебирая” поочередно оси, мы находим вначале ту из них, где дисперсия вдоль оси наибольшая. Затемделаем пересчет дисперсий для оставшихсяk-1осей и снова находим “ось-чемпион” по дисперсии и т.д.

Образно говоря, мы заглядываем в куб (3-х мерное пространство) по очереди по трем осям и вначале ищем то направление, где видим наибольший “туман” (наибольшая дисперсия говорит о наибольшем влиянии чего-то постороннего); затем “усредняем” картинку по оставшимся двум осям и сравниваем разброс данных по каждой из них — находим “середнячка” и “аутсайдера”. Теперь остается решить систему уравнений — в нашем примере для 9 переменных, чтобы отыскать матрицу коэффициентов (весов) A[k·k].

Если коэффициенты Aj i найдены, то можно вернуться к основным переменным, поскольку доказано, что они однозначно выражаются в виде (суммирование по j=1…k)

Xi = S Aji·Zj.{3-32}

Отыскание матрицы весов A[k·k]требует использования ковариационной матрицы и корреляционной матрицы.

Таким образом, метод главных компонент отличается прежде все тем, что дает всегда единственное решение задачи. Правда, трактовка этого решения своеобразна.

· Мы решаем задачу о наличии ровно стольких факторов, сколько у нас наблюдаемых переменных, т.е. вопрос о нашем согласии на меньшее число латентных факторов невозможно поставить;

· В результате решения, теоретически всегда единственного, а практически связанного с громадными вычислительными трудностями при разных физических размерностях основных величин, мы получим ответ примерно такого вида — фактор такой-то (например, привлекательность продавцов при анализе дневной выручки магазинов) занимает третье место по степени влияния на основные переменные.

Этот ответ обоснован — дисперсия этого фактора оказалась третьей по крупности среди всех прочих. Всё… Больше ничего получить в этом случае нельзя. Другое дело, что этот вывод оказался нам полезным или мы его игнорируем — это наше право решать, как использовать системный подход!

 

Несколько иначе осуществляется исследование латентных переменных в случае применения собственно факторного анализа. Здесь каждая реальная переменная рассматривается также как линейная комбинация ряда факторов Fj , но в несколько необычной форме

X i = S B ji · Fj + D i.{3-33} причем суммирование ведется по j=1…m , т.е. по каждому фактору.

Здесь коэффициент Bjiпринято называть нагрузкой на j-й фактор со стороны i-й переменной, а последнее слагаемое в {3-33} рассматривать как помеху, случайное отклонение для Xi.Число факторов m вполне может быть меньше числа реальных переменных n и ситуации, когда мы хотим оценить влияние всего одного фактора (ту же вежливость продавцов), здесь вполне допустимы.

Обратим внимание на само понятие “латентный”, скрытый, непосредственно не измеримый фактор. Конечно же, нет прибора и нет эталона вежливости, образованности, выносливости и т.п. Но это не мешает нам самим “измерить” их — применив соответствующую шкалу для таких признаков, разработав тесты для оценки таких свойств по этой шкале и применив эти тесты к тем же продавцам. Так в чем же тогда “ненаблюдаемость”? А в том, что в процессе эксперимента (обязательно) массового мы не можем непрерывно сравнивать все эти признаки с эталонами и нам приходится брать предварительные, усредненные, полученные совсем не в “рабочих” условиях данные.

Можно отойти от экономики и обратиться к спорту. Кто будет спорить, что результат спортсмена при прыжках в высоту зависит от фактора — “сила толчковой ноги”. Да, это фактор можно измерить и в обычных физических единицах (ньютонах или бытовых килограммах), но когда?! Не во время же прыжка на соревнованиях!

А ведь именно в это, рабочее время фиксируются статистические данные, накапливается материал для исходной матрицы.

Несколько более сложно объяснить сущность самих процедур факторного анализа простыми, элементарными понятиями (по мнению некоторых специалистов в области факторного анализа — вообще невозможно). Поэтому постараемся разобраться в этом, используя достаточно сложный, но, к счастью, доведенный в практическом смысле до полного совершенства, аппарат векторной или матричной алгебры.

До того как станет понятной необходимость в таком аппарате, рассмотрим так называемую основную теорему факторного анализа. Суть ее основана на представлении модели факторного анализа {3-33} в матричном виде

X[k·1] = B[k·m] · F[m·1] + D[k·1] {3-34}

и на последующем доказательстве истинности выражения

R[k·k] = B[k·m] · B*[m·k], {3-35}

для “идеального” случая, когда невязки Dпренебрежимо малы.

Здесь B*[m·k]это та же матрица B [k·m], но преобразованная особым образом (транспонированная).

Трудность задачи отыскания матрицы нагрузок на факторы очевидна — еще в школьной алгебре указывается на бесчисленное множество решений системы уравнений, если число уравнений больше числа неизвестных. Грубый подсчет говорит нам, что нам понадобится найти k·m неизвестных элементов матрицы нагрузок, в то время как только около k2 / 2 известных коэффициентов корреляции. Некоторую “помощь” оказывает доказанное в теории факторного анализа соотношение между данным коэффициентом парной корреляции (например R12) и набором соответствующих нагрузок факторов:

R12 = B11 · B21 + B12 · B22 + … + B1m · B2m . {3-36}

Таким образом, нет ничего удивительного в том утверждении, что факторный анализ (а, значит, и системный анализ в современных условиях) — больше искусство, чем наука. Здесь менее важно владеть “навыками” и крайне важно понимать как мощность, так и ограниченные возможности этого метода.

Есть и еще одно обстоятельство, затрудняющее профессиональную подготовку в области факторного анализа — необходимость быть профессионалом в “технологическом” плане, в нашем случае это, конечно же, экономика.

Но, с другой стороны, стать экономистом высокого уровня вряд ли возможно, не имея хотя бы представлений о возможностях анализировать и эффективно управлять экономическими системами на базе решений, найденных с помощью факторного анализа.

Не следует обольщаться вульгарными обещаниями популяризаторов факторного анализа, не следует верить мифам о его всемогущности и универсальности. Этот метод “на вершине” только по одному показателю — своей сложности, как по сущности, так и по сложности практической реализации даже при “повальном” использовании компьютерных программ. К примеру, есть утверждения о преимуществах метода главных компонент — дескать, этот метод точнее расчета нагрузок на факторы. По этому поводу имеется одна острота известного итальянского статистика Карло Джинни, она в вольном пересказе звучит примерно так: “ Мне надо ехать в Милан, и я куплю билет на миланский поезд, хотя поезда на Неаполь ходят точнее и это подтверждено надежными статистическими данными. Почему? Да потому, что мне надо в Милан…”.

 

– Конец работы –

Эта тема принадлежит разделу:

УЧЕТ И АУДИТ. Конспект лекций

Конспект лекций для специальности УЧЕТ И АУДИТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Методы анализа больших систем, факторный анализ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие понятия теории систем и системного анализа
Термины теория систем и системный анализ или, более кратко — системный подход, несмотря на период более 25 лет их использования, все еще не нашли общепринятого, стандартного ис

Сущность и принципы системного подхода
ТССА, как отрасль науки, может быть разделена на две, достаточно условные части: · теоретическую: использующую такие отрасли как теория вероятностей, теория информаци

Проблемы согласования целей
Как уже отмечалось, в большинстве случаев (в экономических системах — повсеместно), показателем полноты достижения цели “жизни” системы служит стоимостной показатель. Разумеется, что выбор показате

Проблемы оценки связей в системе
Рассмотрим теперь вопрос о связях системы — между отдельными элементами подсистем, подсистемами разных уровней и связях с внешней средой. Хотя бы умозрительно можно полагать наличие каналов,

Моделирование как метод системного анализа
Одной из проблем, с которой сталкиваются почти всегда при проведении системного анализа, является проблема эксперимента в системе или над системой. Очень редко это разрешено моральным

Процессы принятия управляющих решений
Пусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. На

Случайные события и величины, их основные характеристики
Как уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть: · продукция, т. е. реальные, физически ощутимые пред

Взаимосвязи случайных событий
Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать

Схемы случайных событий и законы распределений случайных величин
Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ. Эти распределения иногда называют "теоретическими", п

Методы непараметрической статистики
Использование классических распределений случайных величин обычно называют "параметрической статистикой" - мы делаем предположение о том, что интересующая нас СВ (дискретная или непрерывн

Корреляция случайных величин
Прямое токование термина корреляция — стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами. Вы

Линейная регрессия
В тех случаях, когда из природы процессов в системе или из данных наблюдений над ней следует вывод о нормальном законе распределения двух СВ - Y и X, из которых одна является независи

Элементы теории статистических решений
Что такое - статистическое решение? В качестве простейшего примера рассмотрим ситуацию, в которой вам предлагают сыграть в такую игру: · вам заплатят 2 доллара, если подброшенная монета у

Общие положения
В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы: · Содержательная

Содержательная постановка задачи
Уже упоминалось, что в постановке задачи системного анализа обязательно участие двух сторон: заказчика (ЛПР) и исполнителя данного системного проекта. При этом участие заказчика не ограничивается ф

Построение модели изучаемой системы в общем случае
Модель изучаемой системы в самом лаконичном виде можно представить в виде зависимости E = f(X,Y){3 - 1} где: E— некоторый количественный показатель эффек

Моделирование в условиях определенности
Классическим примером простейшей задачи системного анализа в условиях определенности может служить задача производства и поставок товара. Пусть некоторая фирма должна производить и поставлять проду

Экспертные оценки, ранговая корреляция и конкордация
Пусть в процессе системного анализа нам пришлось учитывать некоторую величину U, измерение которой возможно лишь по порядковой шкале (Ord).Например, нам приходится учитывать 10 целей

Моделирование системы в условиях неопределенности
Как уже отмечалось в первой части нашего курса, в большинстве реальных больших систем не обойтись без учета “состояний природы” — воздействий стохастического типа, случайных величин или случ

Моделирование систем массового обслуживания
Достаточно часто при анализе экономических систем приходится решать т. н. задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания авто

Моделирование в условиях противодействия, игровые модели
Как уже неоднократно отмечалось, системный анализ невозможен без учета взаимодействий данной системы с внешней средой. Ранее упоминалась необходимость учитывать состояния природы — бо

Моделирование в условиях противодействия, модели торгов
К этому классу относятся задачи анализа систем с противодействием (конкуренцией), также игровых по сути, но с одной особенностью — "правила игры" не постоянны в одном единственном пункте

Методы анализа больших систем, планирование экспериментов
  Еще в начале рассмотрения вопросов о целях и методах системного анализа мы обнаружили ситуации, в которых нет возможности описать элемент системы, подсистему и систему в целом а

От автора
Выражая благодарность каждому, кто дочитал до этого места или прослушал все лекции и посетил все семинары, автор считает своим долгом сделать ряд пояснений, раскрыть свою позицию и свои взгляды на

Теория систем и системный анализ
Общие вопросы системного анализа Методы поиска экстремума Уайлд Д.Дж. Наука об управлении. Байесовский подход

Общие вопросы математики
Комбинаторика Введение в комбинаторный анализ Риордан Дж. Прикладная комбинаторная математика Бе

Математическая статистика
Общие вопросы Метод наименьших квадратов Линник Ю.В. Теория распределений Кендалл М.,СтьюартА.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги