рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МЕТОДАМИ ТЕОРИИ ИГР

ЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МЕТОДАМИ ТЕОРИИ ИГР - раздел Экономика, ЭКОНОМИКА ОТРАСЛЕЙ И РЫНКОВ Цель: Ознакомиться С Методами Решения Экономических Задач В Условиях Конфл...

Цель: ознакомиться с методами решения экономических задач в условиях конфликтных ситуаций используя математическую модель теории матричных игр на ЭВМ.

Рассмотрим методы принятия управленческих решений в условиях конфликта, когда в ситуации участвуют две стороны, интересы которых противоположны. Это могут быть, например, отношения продавца и покупателя, банка и заемщика, истца и ответчика. Для решения таких задач используют методы теории игр, для анализа которых удобно использовать ЭВМ.

Пусть в игре участвуют два игрока А и В. Игрок А имеет n чистых стратегий, а игрок В – m стратегий. А выигрывает у В сумму aij, если А выбрал вариант i (i=1,2,…,n), а В выбрал вариант j (j=1,2,…,m). Тогда платежная матрица игры имеет вид:

a11 a12a1m

A = [aij ] = a21 a22a2m

………..

an1 an2 anm

       
 
 
   


Для нахождения вероятностей pi и qj оптимальных смешанных стратегий необходимо решать прямую и двойственную задачи линейного программирования (ЗЛП) вида:

а) прямая ЗЛП – минимизировать Z= x1+x2+…+xn

при ограничениях

a11x1+a21x2+…+an1xn ≥ 1,

a12x1+a22x2+…+an2xn ≥ 1, (5.1)

……………………. ……

a1mx1+a2mx2+…+anmxn≥ 1,

x1, x2,…,xn ≥ 0.

Обращаем внимание: строка ограничения формируется из столбца платежной матрицы!

Решая ее, находим оптимальное решение x1*, x2*,…,xn*, откуда, разделив на Z*=x1*+x2*+…+xn*, получаем оптимальную стратегию для игрока А (р1*, р2*,.., рn*), которая заключается в применении i-й чистой стратегии с частотой рi*= хi*/ Z*.

б) двойственная ЗЛП – максимизировать F=y1+y2++ym→max;

при ограничениях

a11y1+ a12y2+ …+ a1mym ≤1;

a21y1+ a22y2+ …+ a2mym ≤1; (5.2)

…………………………..

an1y1+ an2y2+ …+ anmym ≤1;

y1≥0; y2≥0; … ym ≥0.

Здесь строка ограничения формируется из строки платежной матрицы.

Решая данную ЗЛП, находим оптимальное решение у1*, у2*,…,уm*, откуда, разделив на F*=y1*+y2*+…+ym*, получаем оптимальную стратегию для игрока B (q1*, q2*,.., qm*), которая заключается в применении j-й чистой стратегии с частотой qj*= yj*/ F*.

Затем находим цену игры g =1/Z*=1/F*.

ПРИМЕР 5.1.Две конкурирующие коммерческие организации А и В выпускают продукцию одного вида. Каждая организация планирует проведение рекламной акции, причем маркетологи каждой компании предложили четыре сценария ее проведения A1, A2, A3, A4 – для компании А и B1, B2, B3, B4 – для компании В. Ожидаемая прибыль для кампании А при каждой ее стратегии Ai и ответе Bj представлена в платежной матрице:

Ai Bj B1 B2 B3 B4
A1
A2
A3
A4

Необходимо найти оптимальные стратегии для обоих игроков А и В в предположении, что чем больше выигрыш одного игрока, тем он меньше для другого. Определить среднюю прибыль А.

Рассмотрим задачу со стороны игрока А. Для ее решения нужно составить соответствующую задачу линейного программирования, то есть необходимо найти минимум функции

x1 + x2 + x3 + x4 →min;

при ограничениях:

70x1 + 60x2 + 20x3 + 50x4≥1;

30x1 + 50x2 + 60x3 + 70x4 ≥1;

20x1 + 40x2 + 80x3 + 30x4 ≥1;

50x1 + 80x2 + 60x3 + 50x4 ≥1;

x1 ≥0; x2 ≥0; x3 ≥0; x4 ≥0.

Для решения данной ЗЛП на ЭВМ также используют надстройку EXCEL «Поиск решения».

Подготовим предварительно в электронной таблице данные.

Запускаем программу MS Excel, вводим в ячейку А1 открывшейся электронной таблицы подпись «Переменные», а в следующие ячейки В1-Е1 произвольные значения переменных x1, x2, x3, x4. Это вначале могут быть произвольные числа, например единицы. Далее, в ячейку А2 вводим подпись «Целевая», а в соседнюю ячейку В2 значение целевой функции (переключившись в английский режим набора текста): «=B1+С1+D1+Е1» или =SUMM(B1:E1), что означает формулу x1 + x2 + x3 + x4. В третьей строке вводятся левые части системы ограничений. Для этого переводим курсор в ячейку А3 и вводим в ней текст «Ограничения», а в ячейку В3 формулу «=70*В1+60*C1+20*D1+50*E1», которая соответствует левой части первого ограничения системы. Три остальных ограничения вводим в ячейки С3-В3, а именно,

в ячейку С3: «=30*В1+50*C1+60*D1+70*E1»,

в D3: «=20*В1+40*C1+80*D1+30*E1»,

в ячейку Е3: «=50*В1+80*C1+60*D1+50*E1».

После этого вызываем надстройку Сервис/Поиск решения, в поле «Установить целевую ячейку» даем ссылку на В2. Ниже, в области «Равной», поставить переключатель на минимальное значение. Ставим курсор в поле «Изменяя ячейки», и даем ссылки на переменные, обводя мышью ячейки В1-Е1.

Далее, переводим курсор в поле «Ограничения», и вводим ограничения. Для этого нажимаем на кнопку «Добавить» и в появившемся окне в поле «Ссылка на ячейку» даем ссылку на ячейки, содержащие левые части всех четырех ограничений, которые хранятся в ячейках В3:Е3 (то есть переводим курсор в поле «Ссылка на ячейку» и обводим мышью ячейки В3:Е3). В центральном поле выбираем знак неравенства – ограничения : «≥», в поле «Ограничение» вводим единицу. Нажимаем «ОК». Для ввода дополнительных ограничений x1≥0; x2≥0; x3≥0; x4≥0 нажимаем «Добавить», в поле «Ссылка на ячейку» ставим курсор и обводим ячейки В1-Е1, выводим в центральное поле «≥», ограничение «0», нажимаем «ОК». Результат на рис.5.1.

Рисунок 5.1 Окно «Поиск решения» прямой ЗЛП

Для запуска вычислений нажимаем кнопку «Выполнить». Появляется надпись, что решение найдено. Выбираем «Сохранить найденное решение» и нажимаем «ОК» – видим результат (рис.5.2): x1=0, x2 =0,015, x3 =0,05, x4 =0, что видно из ячеек В1-Е1.

Рисунок 5.2 Решение прямой ЗЛП примера 5.1

Вводим в А5 подпись «Цена игры», а в соседнюю В5 формулу (переключаясь на английский язык) «=1/(В1+С1+D1+Е1)» или =1/В2. Результат: 50. Это средняя вероятность выигрыша для игрока А. Находим вероятности чистых стратегий в смешанной стратегии р. Для этого вводим в А6 подпись «Р1=», а в соседнюю В6 формулу «=В5*В1», вводим в А7: «Р2=», а в В7 формулу «=В5*С1», в А8: «Р3=», а в В8: «=В5*D1», в А9: «Р4=», в В9: «=В5*Е1». Данные показатели и есть решение задачи (рис.5.3).

Рисунок 5.3 Решение примера 5.1 для игрока А

Рассмотрим теперь решение относительно игрока В.

ЗЛП для игрока В имеет вид:

y1+ y2+ y3+ y4→ max;

70y1+30y2+ 20y3+ 50y4≤1;

60y1+ 50y2+ 40y3+ 80y4≤1;

20y1+ 60y2+ 80y3+ 60y4≤ 1;

50y1+ 70y2+ 30y3+50y4≤1;

y1≥0; y2≥0; y3≥0; y4≥0.

Переходим на «Лист2» электронной таблицы, щелкнув на соответствующей закладке внизу таблицы. Вводим в ячейки открывшейся чистой электронной таблицы в ячейку А1 надпись «Переменные», а в следующие ячейки В1-Е1 произвольные значения переменных, например, цифры 1. В ячейку А2 вводим подпись «Целевая». Вводим в ячейку В2 значение целевой функции (переключившись в английский режим набора текста): «=B1+С1+D1+Е1», что означает формулу y1+ y2+ y3+ y4. В третьей строке вводятся левые части системы ограничений. Для этого переводим курсор в ячейку А3 и вводим в ней текст «Ограничения». Переключившись в английский режим клавиатуры, вводим в ячейку В3 формулу «=70*В1+30*C1+20*D1+50*E1», которая соответствует левой части первого ограничения системы.

Вводим в ячейку С3: «=60*В1+50*C1+40*D1+80*E1»,

в D3: «=20*В1+60*C1+80*D1+60*E1»,

в ячейку Е3: «=50*В1+70*C1+30*D1+50*E1».

После этого вызываем в меню «Cервис» надстройку «Поиск решений». В поле «Установить целевую ячейку» даем ссылку на В2. Ниже, в области «Равной», поставить переключатель на максимальное значение.

Ставим курсор в поле «Изменяя ячейки», и даем ссылки на переменные, обводя мышью ячейки В1-Е1. Далее, переводим курсор в поле «Ограничения», и вводим ограничения. Для этого, нажимаем на кнопку «Добавить» и далее в поле «Ссылка на ячейку» обводим ячейки В3:Е3, содержащие левые части всех четырех ограничений, в центральном поле выбираем знак неравенства – ограничения: «≤», в поле «Ограничение» вводим единицу. Нажимаем «ОК». Для ввода дополнительных ограничений y1≥0; y2≥0; y3≥0; y4≥0 нажимаем «Добавить», в поле «Ссылка на ячейку» ставим курсор и обводим ячейки В1-Е1, выводим в центральное поле «≥», ограничение «0», нажимаем «ОК». Результат на рис.5.4.

Рисунок 5.4 Окно «Поиск решения» обратной ЗЛП

Далее запускаем программу, нажимая «Выполнить». Результат решения обратной ЗЛП в ячейках В1-Е1. Вводим в А5 подпись «Цена игры», а в соседнюю В5 формулу (переключаясь на английский язык) «=1/(В1+С1+D1+Е1)». Находим вероятности чистых стратегий q в смешанной стратегии игрока В. Для этого вводим в А6 подпись «q1=», а в соседнюю В6 формулу «=В5*В1», вводим в А7: «q2=», а в В7 формулу «=В5*С1», в А8: «q3=», а в В8: «=В5*D1», в А9: «q4=», в В9: «=В5*Е1». Данные показатели и есть решение задачи для игрока В (рис.5.5).

Рисунок 5.5 Решение примера 5.1 для игрока В

ПРИМЕР 5.2.Построить прямую и двойственную задачи линейного программирования для решения матричной игры, заданной платежной матрицей:

A=

Прямая и двойственная задачи линейного программирования

имеют вид:

x1 + x2 + x3 + x4 + x5 →min;

ax1 + 3x2 + 4x3 + 6x4 + 7x5 ≥1;

6x1 + ax2 + 2x3 + 3x4 + x5 ≥1;

3x1 +5x2 +ax3 +2x4 +8x5 ≥1;

9x1 +2x2 +6x3 + ax4 +3x5 ≥1;

xi ≥0; i=1,2,3,4,5.

 

y1 + y2 + y3 + y4 →max;

ay1 + 6y2 + 3y3 + 9y4 ≤1;

3y1 + ay2 + 5y3 + 2y4 ≤1;

4y1 + 2y2 + ay3 +6y4 ≤1;

6y1 + 3y2 + 2y3 + ay4 ≤1;

7y1 + y2 + 8y3 + 3y4 ≤1;

yj≥0; j=1,2,3,4.

Из решения игры можно найти цену игры

g =1/( x1 + x2 + x3 + x4 + x5) =1/( y1 + y2 + y3 + y4)

и вероятности состояний

pi = xi g, (i = 1,2,3,4,5); qj = yj g, ( j =1,2,3,4) .

Задание 5.1. Самостоятельно с использованием ЭВМ решить поставленные в примере 5.2 ЗЛП и найти оптимальные смешанные стратегии для игроков А и В.

Значение неизвестного параметра а взять равным номеру варианта.

Отчет должен содержать решения поставленных ЗЛП (значения переменных xi u yj , значения целевых функций), смешанные стратегии для обоих игроков и цену игры g.

Задание 5.2. Директор предприятия А заключает договор с конкурирующей фирмой В о реализации своей продукции на конкретной территории областного центра. Конкурирующие стороны выделили пять районов области. Каждая из них может развивать свое производство в этих пяти районах: A1, A2, A3, A4, A5для стороны А и B1, B2, B3, B4, B5для В. Вероятности успеха для стороны А приведены в платежной матрице:

AiBj B1 B2 B3 B4 B5
A1
A2 30+а
A3 30+а
A4
A5 30+а

Определить оптимальные стратегии для каждой стороны.

Значение неизвестного параметра а взять равным номеру варианта.

Отчет должен содержать математические модели ЗЛП, составленные для игроков А и В, их решения, оптимальные смешанные стратегии для игроков А и В, цену игры g, выводы, в каких районах предприятие А должно реализовывать свою продукцию и в каких пропорциях, чтобы получить оптимальную прибыль вне зависимости от поведения конкурента В и чему равна эта прибыль.

Задание 5.3. Решить игру, описанную платежной матрицей для обоих игроков (матрица приведена для игрока А).

АiВj В1 В2 В3 В4 В5
А1 a
А2 a
А3 а
А4 a

Значение неизвестного параметра а взять равным номеру варианта.

Отчет должен содержать математические модели ЗЛП, составленные для обоих игроков, полученные в результате решения на ЭВМ смешанные стратегии для обоих игроков и цену игры g.

– Конец работы –

Эта тема принадлежит разделу:

ЭКОНОМИКА ОТРАСЛЕЙ И РЫНКОВ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МЕТОДАМИ ТЕОРИИ ИГР

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

В ТАМОЖЕННОЙ СТАТИСТИКЕ
  Учебно-методический комплекс   Челябинск Гельруд Я.Д. Практикум по применению экономико-математических методов и моделей в таможенной статистике:

Рабочая программа
Практикум по применению экономико-математических методов и моделей (очная форма обучения) Темы занятий** Таблица 1. Разделы дисциплины, виды и объем занятий

Методические рекомендации по выполнению контрольных работ.
Контрольная работа является важной частью итогового контроля зна­ний и навыков студентов по всем темам. При выполнении работы студент учится работать со специальной литературой, обрабатывать получе

Требования к критериям оценки выполнения контрольных работ.
Контрольная работа предназначена для итогового контроля зна­ний и навыков студентов по всем темам. Оценка за каждую задачу контрольной работы - зачте­но или не зачтено. Оценка зачтено став

Методические рекомендации по организации самостоятельной работы студентов
Успешное освоение дисциплины требует напряжённой самостоятельной работы студентов. При подготовке к занятиям и контрольным работам студенты кроме теоретических материалов изучают рекомендованную ли

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ НА ЭВМ
Цель: научиться методам решения задач линейного программирования на ЭВМ, рассмотреть основные типы задач – определение оптимального ассортимента продукции, задача составления смеси, целочисленны

Ввод исходных данных
Создание экранной формы и ввод в нее условия задачи Экранная форма для ввода условий задачи (1.1)–(1,2) вместе с введенными в нее исходными данными представлена на рис.1.1.

Решение задачи
Установка параметров решения задачи Задача запускается на решение в окне "Поиск решения". Но предварительно для установления конкретных параметров решения задач

Целочисленное программирование
Допустим, что к условию задачи (1.1) добавилось требование целочисленности значений всех переменных. В этом случае описанный выше процесс ввода условия задачи необходимо дополнить следующими шагами

Отчет по результатам
Отчет по результатам состоит из трех таблиц (рис. 1.14): Microsoft Excel 11.0 Отчет по результатам      

Отчет по устойчивости
Отчет по устойчивости состоит из двух таблиц (рис. 1.15). Microsoft Excel 11.0 Отчет по устойчивости      

Задачи с булевыми переменными
Частным случаем задач с целочисленными переменными являются задачи, в результате решения которых искомые переменные xj могут принимать только одно из двух значений: 0 или 1. Такие

ДВУХИНДЕКСНЫЕ ЗАДАЧИ ЛП (ТРАНСПОРТНАЯ ЗАДАЧА).
Цель: научиться методам решения двухиндексных задач линейного программирования на ЭВМ, рассмотреть основные типы задач – транспортная задача, задача о назначении. Двухиндексные зада

Ввод исходной информации
Готовим таблицу в Еxcel как показано на рис.2.1.   А В С D E F G

РЕШЕНИЕ ДВОЙСТВЕННЫХ ЗАДАЧ И ЗАДАЧ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
Цель: научиться составлять и решать двойственные ЗЛП. Используя теорию двойственности, научиться методам анализа экономических задач. Получить навыки решения задач нелинейного пр

РЕШЕНИЕ ЗАДАЧ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ НА ЭВМ
Цель: научиться методам решения многокритериальных ЗЛП с помощью ЭВМ, используя метод последовательных уступок. Во многих реальных экономических задачах критериев, которые оптимизир

ИГРЫ С ПРИРОДОЙ
Цель: научиться методам принятия решений в условиях неопределенности и риска (такие математические модели называются Играми с природой) на ЭВМ с использованием критериев Лапласа, Вальда, Байеса,

ПОСТРОЕНИЕ ФУНКЦИИ СПРОСА
Цель: используя методы моделирования с помощью целевой функции потребления научиться находить оптимальный набор благ потребителя, функции спроса на блага по цене, функции спроса по доходу с помо

БАЛАНСОВЫЕ МОДЕЛИ
Цель: рассмотреть методы решения задач межотраслевого анализа на ЭВМ используя модель Леонтьева. Балансовые модели предназначены для определения равновесного баланса

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги