рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ЭКОНОМЕТРИКА

ЭКОНОМЕТРИКА - раздел Экономика, Упи     Эконометрика...

УПИ

 

 

ЭКОНОМЕТРИКА

Учебно-методическое пособие

 

Екатеринбург – 2007


 

Составитель: ст. препод. Касьянов В.А.

 

Рецензенты:

 

© Касьянов В.А., 2007

© УПИ, 2007


Оглавление

Предисловие……………………………………………………………….4

Введение…..………………………………………………………………..5

Парная регрессия и корреляция……………..………………………9

1.1. Линейная модель парной регрессии и корреляции………..……….13

1.2. Нелинейные модели парной регрессии и корреляции…………..…26

Множественная регрессия и корреляция………………….………38

2.1. Спецификация модели. Отбор факторов при построении

уравнения множественной регрессии…………………………….……..38

2.2. Метод наименьших квадратов (МНК). Свойства оценок

на основе МНК………………………………………………………...….44

2.3. Проверка существенности факторов и показатели

качества регрессии………………………………………………..………51

2.4. Линейные регрессионные модели с гетероскедастичными

остатками…………………………………………………………………..64

2.5. Обобщенный метод наименьших квадратов (ОМНК)…….……….73

2.6. Регрессионные модели с переменной структурой

(фиктивные переменные)…………………………………………………80

Системы эконометрических уравнений…………...………………87

3.1. Структурная и приведенная формы модели………………………..89

3.2. Проблема идентификации…………………………………………...92

3.3. Методы оценки параметров структурной формы модели…………98

Временные ряды……………………………………………………..102

4.1. Автокорреляция уровней временного ряда……………………….104

4.2. Моделирование тенденции временного ряда……………………..111

4.3. Моделирование сезонных колебаний……………………………...112

4.4. Автокорреляция в остатках. Критерий Дарбина-Уотсона…….....122

Приложение A. Случайные переменные……………………………127

Приложение B. Тестовые задания……………………………………152

Приложение C. Вопросы к экзамену………………………………...164

Приложение D. Варианты индивидуальных заданий……………..166

Приложение E. Математико-статистические таблицы…………...194

Литература………...…………………………………………………….197


Предисловие

Применение аспектов математики в различных областях знаний (экономика, физика, химия, биология, социология и т.д.) принесло значительные успехи. Для экономических специальностей «Маркетинг», «Финансы и кредит», «Менеджмент», «Бухучёт и аудит» студентам читаются большие по объему курсы математики, включая спецкурсы «Математические методы и модели в экономике» и «Эконометрика», которые могут быть успешно использованы в учебной практике студентами для выполнения курсовых и дипломных работ. В настоящее время идет накопление информации в различных областях экономических знаний с использованием эконометрики.

Пособие содержит курс лекций по основным разделам эконометрики: парная и множественная регрессия, системы эконометрических уравнений и временные ряды.

По всем разделам представлены тесты и варианты контрольных работ. Для выполнения контрольных заданий по 10 вариантам рассмотрены типовые задачи.

Пособие предназначено для студентов очной, заочной и дистанционной форм обучения.


Введение

Эконометрика – одна из базовых дисциплин экономического образования во всем мире. Однако до недавнего времени она не была признана в СССР и России. Это было связано с тем, что из трех основных составляющих эконометрики – экономической теории, экономической статистики и математики – две первые были представлены в нашей стране неудовлетворительно. Но теперь ситуация изменилась коренным образом.

Существуют различные варианты определения эконометрики:

1) расширенные, при которых к эконометрике относят все, что связано с измерениями в экономике;

2) узко инструментально ориентированные, при которых понимают определенный набор математико-статистических средств, позволяющих верифицировать модельные соотношения между анализируемыми экономическими показателями.

На наш взгляд, наиболее точно объяснил сущность эконометрики один из основателей этой науки Р.Фриш, который и ввел этот название в 1926 г.: «Эконометрика – это не то же самое, что экономическая статистика. Она не идентична и тому, что мы называем экономической теорией, хотя значительная часть этой теории носит количественный характер. Эконометрика не является синонимом приложений математики к экономике. Как показывает опыт, каждая из трех отправных точек – статистика, экономическая теория и математика – необходимое, но не достаточное условие для понимания количественных соотношений в современной экономической жизни. Это единство всех трех составляющих. И это единство образует эконометрику»[1].

Эконометрика – это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и экономических измерений, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией.

Эконометрический метод складывался в преодолении следующих трудностей, искажающих результаты применения классических статистических методов (сущность новых терминов будет раскрыта в дальнейшем):

1. асимметричности связей;

2. мультиколлинеарности связей;

3. эффекта гетероскедастичности;

4. автокорреляции;

5. ложной корреляции;

6. наличия лагов.

Для описания сущности эконометрической модели удобно разбить весь процесс моделирования на шесть основных этапов:

1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли;

2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации, в частности, относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих;

3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в нее связей;

4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей на различных временных или пространственных тактах функционирования изучаемого явления;

5-й этап (идентификация модели) – статистический анализ модели и в первую очередь статистическое оценивание неизвестных параметров модели;

6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.

Эконометрическое моделирование реальных социально-экономических процессов и систем обычно преследует два типа конечных прикладных целей (или одну из них): 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы; 2) имитацию различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).

При постановке задач эконометрического моделирования следует определить их иерархический уровень и профиль. Анализируемые задачи могут относиться к макро- (страна, межстрановой анализ), мезо- (регионы внутри страны) и микро- (предприятия, фирмы, семьи) уровням и быть направленными на решение вопросов различного профиля инвестиционной, финансовой или социальной политики, ценообразования, распределительных отношений и т.п.

Данное пособие написано на основе книг [1], [2] и с использованием других указанных источников. Предполагается, что читатели знакомы с основами теории вероятностей, математической статистики, линейной алгебры и экономической статистики. Краткие сведения из теории вероятности и математической статистики приводятся в приложении в конце книги, которое может использоваться в качестве справочного материала. Однако для восполнения серьезных пробелов в знаниях этих дисциплин следует обратиться к специальной литературе. Учебный материал в пособии условно разбит на четыре части и приложения:

В первой части рассмотрены модели парной регрессии (линейная и нелинейные модели).

Во второй части достаточно подробно разбирается модель множественной линейной регрессии и кратко обсуждается проблемы гомоскедастичности и автокоррелированности остатков.

Третья часть посвящена системам одновременных эконометрических уравнений.

В четвертой части рассматриваются модели временных рядов.

Приложение A содержит краткие сведения из теории вероятностей и математической статистики.

В приложениях B, C и D содержатся тестовые задания, варианты контрольных работ по всем темам и экзаменационные вопросы.

Приложение E содержит статистико-математические таблицы распределений Фишера, Стьюдента и Дарбина-Уотсона.

Мы надеемся, что знакомство с этим учебным пособиемпослужит читателям отправной точкой в изучкнии очень нужной науки – эконометрики.


Парная регрессия и корреляция

, где – зависимая переменная (результативный признак); – независимая, или… ,

Рис. 1.1. Основные типы кривых, используемые при

количественной оценке связей между двумя переменными.

Значительный интерес представляет аналитический метод выбора типа уравнения регрессии. Он основан на изучении материальной природы связи исследуемых признаков.

При обработке информации на компьютере выбор вида уравнения регрессии обычно осуществляется экспериментальным методом, т. е. путем сравнения величины остаточной дисперсии , рассчитанной при разных моделях.

Если уравнение регрессии проходит через все точки корреляционного поля, что возможно только при функциональной связи, когда все точки лежат на линии регрессии , то фактические значения результативного признака совпадают с теоретическими , т.е. они полностью обусловлены влиянием фактора . В этом случае остаточная дисперсия .

В практических исследованиях, как правило, имеет место некоторое рассеяние точек относительно линии регрессии. Оно обусловлено влиянием прочих, не учитываемых в уравнении регрессии, факторов. Иными словами, имеют место отклонения фактических данных от теоретических . Величина этих отклонений и лежит в основе расчета остаточной дисперсии:

.

Чем меньше величина остаточной дисперсии, тем меньше влияние не учитываемых в уравнении регрессии факторов и тем лучше уравнение регрессии подходит к исходным данным.

Считается, что число наблюдений должно в 7-8 раз превышать число рассчитываемых параметров при переменной . Это означает, что искать линейную регрессию, имея менее 7 наблюдений, вообще не имеет смысла. Если вид функции усложняется, то требуется увеличение объема наблюдений, ибо каждый параметр при должен рассчитываться хотя бы по 7 наблюдениям. Значит, если мы выбираем параболу второй степени , то требуется объем информации уже не менее 14 наблюдений.

Линейная модель парной регрессии и корреляции

Линейная регрессия сводится к нахождению уравнения вида или . (1.1) Уравнение вида позволяет по заданным значениям фактора находить теоретические значения результативного признака,…

Рис. 1.4.

По графику видно, что точки выстраиваются в некоторую прямую линию.

Для удобства дальнейших вычислений составим таблицу.

Таблица 1.3

  , %
1,2 0,9 1,08 1,44 0,81 1,038 –0,138 0,0190 15,33
3,1 1,2 3,72 9,61 1,44 1,357 –0,157 0,0246 13,08
5,3 1,8 9,54 28,09 3,24 1,726 0,074 0,0055 4,11
7,4 2,2 16,28 54,76 4,84 2,079 0,121 0,0146 5,50
9,6 2,6 24,96 92,16 6,76 2,449 0,151 0,0228 5,81
11,8 2,9 34,22 139,24 8,41 2,818 0,082 0,0067 2,83
14,5 3,3 47,85 210,25 10,89 3,272 0,028 0,0008 0,85
18,7 3,8 71,06 349,69 14,44 3,978 –0,178 0,0317 4,68
Итого 71,6 18,7 208,71 885,24 50,83 18,717 –0,017 0,1257 52,19
Среднее значение 8,95 2,34 26,09 110,66 6,35 2,34 0,0157 6,52
5,53 0,935
30,56 0,874

Рассчитаем параметры линейного уравнения парной регрессии . Для этого воспользуемся формулами (1.5):

;

.

Получили уравнение: . Т.е. с увеличением дохода семьи на 1000 руб. расходы на питание увеличиваются на 168 руб.

Как было указано выше, уравнение линейной регрессии всегда дополняется показателем тесноты связи – линейным коэффициентом корреляции :

.

Близость коэффициента корреляции к 1 указывает на тесную линейную связь между признаками.

Коэффициент детерминации (примерно тот же результат получим, если воспользуемся формулой (1.7)) показывает, что уравнением регрессии объясняется 98,7% дисперсии результативного признака, а на долю прочих факторов приходится лишь 1,3%.

Оценим качество уравнения регрессии в целом с помощью -критерия Фишера. Сосчитаем фактическое значение -критерия:

.

Табличное значение (, , ): . Так как , то признается статистическая значимость уравнения в целом.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитаем -критерий Стьюдента и доверительные интервалы каждого из показателей. Рассчитаем случайные ошибки параметров линейной регрессии и коэффициента корреляции :

,

,

.

Фактические значения -статистик: , , . Табличное значение -критерия Стьюдента при и числе степеней свободы есть . Так как , и , то признаем статистическую значимость параметров регрессии и показателя тесноты связи. Рассчитаем доверительные интервалы для параметров регрессии и : и . Получим, что и .

Средняя ошибка аппроксимации (находим с помощью столбца 10 таблицы 1.3; ) говорит о хорошем качестве уравнения регрессии, т.е. свидетельствует о хорошем подборе модели к исходным данным.

И, наконец, найдем прогнозное значение результативного фактора при значении признака-фактора, составляющем 110% от среднего уровня , т.е. найдем расходы на питание, если доходы семьи составят 9,85 тыс. руб.

(тыс. руб.)

Значит, если доходы семьи составят 9,845 тыс. руб., то расходы на питание будут 2,490 тыс. руб.

Найдем доверительный интервал прогноза. Ошибка прогноза

,

а доверительный интервал ():

.

Т.е. прогноз является статистически надежным.

Теперь на одном графике изобразим исходные данные и линию регрессии:

Рис. 1.5.

Нелинейные модели парной регрессии и корреляции

Различают два класса нелинейных регрессий: 1. Регрессии, нелинейные относительно включенных в анализ объясняющих… – полиномы различных степеней – , ;

Таблица 1.5

Вид функции, Первая производная, Средний коэффициент эластичности,

Возможны случаи, когда расчет коэффициента эластичности не имеет смысла. Это происходит тогда, когда для рассматриваемых признаков бессмысленно определение изменения в процентах.

Уравнение нелинейной регрессии, так же, как и в случае линейной зависимости, дополняется показателем тесноты связи. В данном случае это индекс корреляции:

, (1.21)

где – общая дисперсия результативного признака , – остаточная дисперсия.

Величина данного показателя находится в пределах: . Чем ближе значение индекса корреляции к единице, тем теснее связь рассматриваемых признаков, тем более надежно уравнение регрессии.

Квадрат индекса корреляции носит название индекса детерминации и характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака:

, (1.22)

т.е. имеет тот же смысл, что и в линейной регрессии; .

Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина меньше . А близость этих показателей указывает на то, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.

Индекс детерминации используется для проверки существенности в целом уравнения регрессии по -критерию Фишера:

, (1.23)

где – индекс детерминации, – число наблюдений, – число параметров при переменной . Фактическое значение -критерия (1.23) сравнивается с табличным при уровне значимости и числе степеней свободы (для остаточной суммы квадратов) и (для факторной суммы квадратов).

О качестве нелинейного уравнения регрессии можно также судить и по средней ошибке аппроксимации, которая, так же как и в линейном случае, вычисляется по формуле (1.8).

Рассмотрим пример из параграфа 1.1, предположив, что связь между признаками носит нелинейный характер, и найдем параметры следующих нелинейных уравнений: , и .

Для нахождения параметров регрессии делаем замену и составляем вспомогательную таблицу ().

Таблица 1.5

 
1,2 0,182 0,9 0,164 0,033 0,81 0,499 0,401 0,1610 44,58
3,1 1,131 1,2 1,358 1,280 1,44 1,508 -0,308 0,0947 25,64
5,3 1,668 1,8 3,002 2,781 3,24 2,078 -0,278 0,0772 15,43
7,4 2,001 2,2 4,403 4,006 4,84 2,433 -0,233 0,0541 10,57
9,6 2,262 2,6 5,881 5,116 6,76 2,709 -0,109 0,0119 4,20
11,8 2,468 2,9 7,157 6,092 8,41 2,929 -0,029 0,0008 0,99
14,5 2,674 3,3 8,825 7,151 10,89 3,148 0,152 0,0232 4,62
18,7 2,929 3,8 11,128 8,576 14,44 3,418 0,382 0,1459 10,05
Итого 71,6 15,315 18,7 41,918 35,035 50,83 18,720 -0,020 0,5688 116,08
Среднее значение 8,95 1,914 2,34 5,240 4,379 6,35 0,0711 14,51
0,846 0,935
0,716 0,874

Найдем уравнение регрессии:

,

.

Т.е. получаем следующее уравнение регрессии: . Теперь заполняем столбцы 8-11 нашей таблицы.

Индекс корреляции находим по формуле (1.21):

,

а индекс детерминации , который показывает, что 91,8% вариации результативного признака объясняется вариацией признака-фактора, а 8,2% приходится на долю прочих факторов.

Средняя ошибка аппроксимации: , что недопустимо велико.

-критерий Фишера:

,

значительно превышает табличное .

Изобразим на графике исходные данные и линию регрессии:

Рис. 1.6.

Для нахождения параметров регрессии делаем замену и составляем вспомогательную таблицу ().

Таблица 1.6

 
1,2 1,10 0,9 0,99 1,2 0,81 0,734 0,166 0,0276 18,46
3,1 1,76 1,2 2,11 3,1 1,44 1,353 -0,153 0,0235 12,77
5,3 2,30 1,8 4,14 5,3 3,24 1,857 -0,057 0,0033 3,19
7,4 2,72 2,2 5,98 7,4 4,84 2,247 -0,047 0,0022 2,12
9,6 3,10 2,6 8,06 9,6 6,76 2,599 0,001 0,0000 0,05
11,8 3,44 2,9 9,96 11,8 8,41 2,912 -0,012 0,0001 0,42
14,5 3,81 3,3 12,57 14,5 10,89 3,259 0,041 0,0017 1,20
18,7 4,32 3,8 16,43 18,7 14,44 3,740 0,060 0,0036 1,58
Итого 71,6 22,54 18,7 60,24 71,6 50,83 18,700 -0,001 0,0619 39,82
Среднее значение 8,95 2,82 2,34 7,53 8,95 6,35 0,0077 4,98
1,00 0,935
1,00 0,874

Найдем уравнение регрессии:

,

.

Т.е. получаем следующее уравнение регрессии: . Теперь заполняем столбцы 8-11 нашей таблицы.

Индекс корреляции находим по формуле (1.21):

,

а индекс детерминации , который показывает, что 99,1% вариации результативного признака объясняется вариацией признака-фактора, а 0,9% приходится на долю прочих факторов.

Средняя ошибка аппроксимации: показывает, что линия регрессии хорошо приближает исходные данные.

-критерий Фишера:

,

значительно превышает табличное .

Изобразим на графике исходные данные и линию регрессии:

Рис. 1.7

Для нахождения параметров регрессии необходимо провести ее линеаризацию, как было показано выше:

,

где .

Составляем вспомогательную таблицу для преобразованных данных:

Таблица 1.7

 
0,182 -0,105 -0,019 0,033 0,011 0,8149 0,0851 0,0072 9,46
1,131 0,182 0,206 1,280 0,033 1,3747 -0,1747 0,0305 14,56
1,668 0,588 0,980 2,781 0,345 1,8473 -0,0473 0,0022 2,63
2,001 0,788 1,578 4,006 0,622 2,2203 -0,0203 0,0004 0,92
2,262 0,956 2,161 5,116 0,913 2,5627 0,0373 0,0014 1,43
2,468 1,065 2,628 6,092 1,134 2,8713 0,0287 0,0008 0,99
2,674 1,194 3,193 7,151 1,425 3,2165 0,0835 0,0070 2,53
2,929 1,335 3,910 8,576 1,782 3,7004 0,0996 0,0099 2,62
Итого 15,315 6,002 14,637 35,035 6,266 18,608 0,0919 0,0595 35,14
Среднее значение 1,914 0,750 1,830 4,379 0,783 0,0074 4,39
0,846 0,470
0,716 0,221

Найдем уравнение регрессии:

,

.

Т.е. получаем следующее уравнение регрессии: . После потенцирования находим искомое уравнение регрессии:

.

Теперь заполняем столбцы 7-10 нашей таблицы.

Индекс корреляции находим по формуле (1.21):

,

а индекс детерминации , который показывает, что 96,7% вариации результативного признака объясняется вариацией признака-фактора, а 3,3% приходится на долю прочих факторов.

Средняя ошибка аппроксимации: показывает, что линия регрессии хорошо приближает исходные данные.

-критерий Фишера:

,

значительно превышает табличное .

Изобразим на графике исходные данные и линию регрессии:

Рис. 1.8.

Сравним построенные модели по индексу детерминации и средней ошибке аппроксимации:

 

 

Таблица 1.8

Модель Индекс детерминации, (, ) Средняя ошибка аппроксимации, , %
Линейная модель, 0,987 6,52
Полулогарифмическая модель, 0,918 14,51
Модель с квадратным корнем, 0,991 4,98
Степенная модель, 0,967 4,39

Наиболее хорошо исходные данные аппроксимирует модель с квадратным корнем. Но в данном случае, так как индексы детерминации линейной модели и модели с квадратным корнем отличаются всего на 0,004, то вполне можно обойтись более простой линейной функцией.


Множественная регрессия и корреляция

, где – зависимая переменная (результативный признак), – независимые, или… Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек…

Спецификация модели. Отбор факторов при построении

Уравнения множественной регрессии

Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе… 1. Они должны быть количественно измеримы. Если необходимо включить в модель… 2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Таблица 2.1

 
0,8 0,7 0,6
0,8 0,8 0,5
0,7 0,8 0,2
0,6 0,5 0,2

Очевидно, что факторы и дублируют друг друга. В анализ целесообразно включить фактор , а не , хотя корреляция с результатом слабее, чем корреляция фактора с , но зато значительно слабее межфакторная корреляция . Поэтому в данном случае в уравнение множественной регрессии включаются факторы , .

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий:

1. Затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл.

2. Оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы были бы равны нулю. Так, для уравнения, включающего три объясняющих переменных

матрица коэффициентов корреляции между факторами имела бы определитель, равный единице:

.

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:

.

Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Существует ряд подходов преодоления сильной межфакторной корреляции. Самый простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если , то возможно построение следующего совмещенного уравнения:

.

Рассматриваемое уравнение включает взаимодействие первого порядка (взаимодействие двух факторов). Возможно включение в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по -критерию Фишера, но, как правило, взаимодействия третьего и более высоких порядков оказываются статистически незначимыми.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно к разным методикам. В зависимости от того, какая методика построения уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:

1. Метод исключения – отсев факторов из полного его набора.

2. Метод включения – дополнительное введение фактора.

3. Шаговый регрессионный анализ – исключение ранее введенного фактора.

При отборе факторов также рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6–7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а -критерий меньше табличного значения.

Метод наименьших квадратов (МНК).

Свойства оценок на основе МНК

Ввиду четкой интерпретации параметров наиболее широко используется линейная функция. В линейной множественной регрессии параметры при называются… Рассмотрим линейную модель множественной регрессии . (2.1)

Таблица 2.2

Предполагая, что между переменными , , существует линейная корреляционная зависимость, найдем уравнение регрессии по и .

Для удобства дальнейших вычислений составляем таблицу ():

Таблица 2.3

5,13 0,016
8,79 1,464
9,64 0,127
5,98 1,038
5,86 0,741
6,23 0,052
6,35 0,121
5,61 0,377
5,13 0,762
9,28 1,631
Сумма 6,329
Среднее значение 9,4 6,3 6,8 90,8 41,7 49,6 60,3 66,4 44,5
2,44 2,01 3,36
1,56 1,42 1,83

Для нахождения параметров уравнения регрессии в данном случае необходимо решить следующую систему нормальных уравнений:

Откуда получаем, что , , . Т.е. получили следующее уравнение множественной регрессии:

.

Оно показывает, что при увеличении только мощности пласта (при неизменном ) на 1 м добыча угля на одного рабочего увеличится в среднем на 0,854 т, а при увеличении только уровня механизации работ (при неизменном ) на 1% – в среднем на 0,367 т.

Найдем уравнение множественной регрессии в стандартизованном масштабе:

при этом стандартизованные коэффициенты регрессии будут

,

.

Т.е. уравнение будет выглядеть следующим образом:

.

Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что мощность пласта оказывает большее влияние на сменную добычу угля, чем уровень механизации работ.

Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности (2.11):

.

Вычисляем:

, .

Т.е. увеличение только мощности пласта (от своего среднего значения) или только уровня механизации работ на 1% увеличивает в среднем сменную добычу угля на 1,18% или 0,34% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора .

Проверка существенности факторов

И показатели качества регрессии

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком или, иначе, оценивает… Независимо от формы связи показатель множественной корреляции может быть… , (2.12)

Линейные регрессионные модели

С гетероскедастичными остатками

случайная составляющая представляет собой ненаблюдаемую величину. После того… При изменении спецификации модели, добавлении в нее новых наблюдений выборочные оценки остатков могут меняться.…

А б

В

Рис. 2.2.Зависимость случайных остатков от теоретических значений .

В этих случаях необходимо либо применять другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки не будут случайными величинами.

Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что . Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных.

Вместе с тем, несмещенность оценок коэффициентов регрессии, полученных МНК, зависит от независимости случайных остатков и величин , что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью наряду с изложенным графиком зависимости остатков от теоретических значений результативного признака строится график зависимости случайных остатков от факторов, включенных в регрессию (рис. 2.3).

Рис. 2.3. Зависимость величины остатков от величины фактора .

Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений . Если же график показывает наличие зависимости и , то модель неадекватна. Причины неадекватности могут быть разные. Возможно, что нарушена третья предпосылка МНК и дисперсия остатков не постоянна для каждого значения фактора . Может быть неправильна спецификация модели и в нее необходимо ввести дополнительные члены от , например . Скопление точек в определенных участках значений фактора говорит о наличии систематической погрешности модели.

Предпосылка о нормальном распределении остатков позволяет проводить проверку параметров регрессии и корреляции с помощью - и -критериев. Вместе с тем, оценки регрессии, найденные с применением МНК, обладают хорошими свойствами даже при отсутствии нормального распределения остатков, т.е. при нарушении пятой предпосылки МНК.

Совершенно необходимым для получения по МНК состоятельных оценок параметров регрессии является соблюдение третьей и четвертой предпосылок.

В соответствии с третьей предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции (рис. 2.4).

А б

В

Рис. 2.4. Примеры гетероскедастичности.

На рис. 2.4 изображено: а – дисперсия остатков растет по мере увеличения ; б – дисперсия остатков достигает максимальной величины при средних значениях переменной и уменьшается при минимальных и максимальных значениях ; в – максимальная дисперсия остатков при малых значениях и дисперсия остатков однородна по мере увеличения значений .

Наличие гомоскедастичности или гетероскедастичности можно видеть и по рассмотренному выше графику зависимости остатков от теоретических значений результативного признака . Так, для рис. 2.4а зависимость остатков от представлена на рис. 2.5.

Рис. 2.5. Гетероскедастичность: большая дисперсия для больших значений .

Соответственно для зависимости, изображенной на полях корреляции рис. 2.4б и 2.4в гетероскедастичность остатков представлена на рис. 2.6 и 2.7.

Рис. 2.6. Гетероскедастичность, соответствующая полю корреляции на рис. 2.4б.

Рис. 2.7. Гетероскедастичность, соответствующая полю корреляции на рис. 2.4в.

Для множественной регрессии данный вид графиков является наиболее приемлемым визуальным способом изучения гомо- и гетероскедастичности.

При построении регрессионных моделей чрезвычайно важно соблюдение четвертой предпосылки МНК – отсутствие автокорреляции остатков, т.е. значения остатков , распределены независимо друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений[4]. Коэффициент корреляции между и , где – остатки текущих наблюдений, – остатки предыдущих наблюдений (например, ), может быть определен как

,

т.е. по обычной формуле линейного коэффициента корреляции. Если этот коэффициент окажется существенно отличным от нуля, то остатки автокоррелированы и функция плотности вероятности зависит от -й точки наблюдения и от распределения значений остатков в других точках наблюдения.

Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии. Особенно актуально соблюдение данной предпосылки МНК при построении регрессионных моделей по рядам динамики, где ввиду наличия тенденции последующие уровни динамического ряда, как правило, зависят от своих предыдущих уровней.

При несоблюдении основных предпосылок МНК приходится корректировать модель, изменяя ее спецификацию, добавлять (исключать) некоторые факторы, преобразовывать исходные данные для того, чтобы получить оценки коэффициентов регрессии, которые обладают свойством несмещенности, имеют меньшее значение дисперсии остатков и обеспечивают в связи с этим более эффективную статистическую проверку значимости параметров регрессии.

Обобщенный метод наименьших квадратов (ОМНК)

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством… Как и раньше, будем предполагать, что среднее значение остаточных величин… ,

Регрессионные модели с переменной структурой

До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем… Рассмотрим применение фиктивных переменных для функции спроса. Предположим,… ,

Системы эконометрических уравнений

Система уравнений в эконометрических исследованиях может быть построена по-разному. Возможна система независимых уравнений, когда каждая зависимая переменная… (3.1)

Структурная и приведенная формы модели

Эндогенные переменные – это зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через . Экзогенные переменные – это предопределенные переменные, влияющие на… Классификация переменных на эндогенные и экзогенные зависит от теоретической концепции принятой модели. Экономические…

Проблема идентификации

Структурная модель (3.3) в полном виде содержит параметров, а приведенная форма модели в полном виде содержит параметров. Т.е. в полном виде… Чтобы получить единственно возможное решение для структурной модели,… С позиции идентифицируемости структурные модели можно подразделить на три вида:

Таблица 4.1

уравнение идентифицируемо
уравнение неидентифицируемо
уравнение сверхидентифицируемо

Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема.

Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации. Более точно условия идентификации определяются, если накладывать ограничения на коэффициенты матриц параметров структурной модели. Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.

Целесообразность проверки условия идентификации модели через определитель матрицы коэффициентов, отсутствующих в данном уравнении, но присутствующих в других, объясняется тем, что возможна ситуация, когда для каждого уравнения системы выполнено счетное правило, а определитель матрицы названных коэффициентов равен нулю. В этом случае соблюдается лишь необходимое, но недостаточное условие идентификации.

В эконометрических моделях часто наряду с уравнениями, параметры которых должны быть статистически оценены, используются балансовые тождества переменных, коэффициенты при которых равны . В этом случае, хотя само тождество и не требует проверки на идентификацию, ибо коэффициенты при переменных в тождестве известны, в проверке на идентификацию собственно структурных уравнений системы тождества участвуют.

Рассмотрим пример. Изучается модель вида

где – расходы на потребление в период , – совокупный доход в период , – инвестиции в период , – процентная ставка в период , – денежная масса в период , – государственные расходы в период , – расходы на потребление в период , инвестиции в период . Первое уравнение – функция потребления, второе уравнение – функция инвестиций, третье уравнение – функция денежного рынка, четвертое уравнение – тождество дохода.

Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.

Модель включает четыре эндогенные переменные и четыре предопределенные переменные (две экзогенные переменные – и и две лаговые переменные – и ).

Проверим необходимое условие идентификации для каждого из уравнений модели.

Первое уравнение: . Это уравнение содержит две эндогенные переменные и и одну предопределенную переменную . Таким образом, , а , т.е. выполняется условие . Уравнение сверхидентифицируемо.

Второе уравнение: . Оно включает две эндогенные переменные и и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.

Третье уравнение: . Оно включает две эндогенные переменные и и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.

Четвертое уравнение: . Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.

Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.

 
I уравнение –1
II уравнение –1
III уравнение –1
Тождество –1

В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.

Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

 

 
II уравнение –1
III уравнение –1
Тождество

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

 
I уравнение –1
III уравнение
Тождество –1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

 
I уравнение –1
II уравнение –1
Тождество

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:

Методы оценки параметров структурной формы модели

1) косвенный метод наименьших квадратов; 2) двухшаговый метод наименьших квадратов; 3) трехшаговый метод наименьших квадратов;

Временные ряды

1) данные, характеризующие совокупность различных объектов в определенный момент времени; 2) данные, характеризующие один объект за ряд последовательных моментов… Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные на основе…

Рис. 4.1.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка. На рис. 4.2 представлен гипотетический временной ряд, содержащий только сезонную компоненту.

Рис. 4.2.

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты. Пример ряда, содержащего только случайную компоненту, приведен на рис. 4.3.

Рис. 4.3.

Очевидно, что реальные данные не следуют целиком и полностью из каких-либо описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача эконометрического исследования отдельного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

Автокорреляция уровней временного ряда

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда,… Формула для расчета коэффициента автокорреляции имеет вид: (4.1)

Таблица 4.1

Год Квартал Количество возбужденных дел,
I
II
III
IV
I
II
III
IV
I
II
III
IV
I
II
III
IV

Построим поле корреляции:

Рис. 4.4.

Уже исходя из графика видно, что значения образуют пилообразную фигуру. Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу.

Таблица 4.2

-328,33 -288,13 94601,72 107800,59 83018,90
169,67 -292,13 -49565,70 28787,91 85339,94
315,67 205,87 64986,98 99647,55 42382,46
-342,33 351,87 -120455,66 117189,83 123812,50
-228,33 -306,13 69898,66 52134,59 93715,58
292,67 -192,13 -56230,69 85655,73 36913,94
320,67 328,87 105458,74 102829,25 108155,48
-309,33 356,87 -110390,60 95685,05 127356,20
-344,33 -273,13 94046,85 118563,15 74600,00
292,67 -308,13 -90180,41 85655,73 94944,10
205,67 328,87 67638,69 42300,15 108155,48
-238,33 241,87 -57644,88 56801,19 58501,10
-245,33 -202,13 49588,55 60186,81 40856,54
220,67 -209,13 -46148,72 48695,25 43735,36
227,67 256,87 58481,59 51833,63 65982,20
Сумма 9,05 0,05 74085,16 1153766,39 1187469,73
Среднее значение 699,33 663,13

Следует заметить, что среднее значение получается путем деления не на 16, а на 15, т.к. у нас теперь на одно наблюдение меньше.

Теперь вычисляем коэффициент автокорреляции первого порядка по формуле (4.1):

.

Составляем вспомогательную таблицу для расчета коэффициента автокорреляции второго порядка.

Таблица 4.3

145,57 -269,79 -39273,33 21190,62 72786,64
291,57 -273,79 -79828,95 85013,06 74960,96
-366,43 224,21 -82157,27 134270,94 50270,12
-252,43 370,21 -93452,11 63720,90 137055,44
268,57 -287,79 -77291,76 72129,84 82823,08
296,57 -173,79 -51540,90 87953,76 30202,96
-333,43 347,21 -115770,23 111175,56 120554,78
-368,43 375,21 -138238,62 135740,66 140782,54
268,57 -254,79 -68428,95 72129,84 64917,94
181,57 -289,79 -52617,17 32967,66 83978,24
-262,43 347,21 -91118,32 68869,50 120554,78
-269,43 260,21 -70108,38 72592,52 67709,24
196,57 -183,79 -36127,60 38639,76 33778,76
203,57 -190,79 -38839,12 41440,74 36400,82
Сумма -0,02 -0,06 -1034792,71 1037835,43 1116776,36
Среднее значение 723,43 644,79

Следовательно

.

Аналогично находим коэффициенты автокорреляции более высоких порядков, а все полученные значения заносим в сводную таблицу.

Таблица 4.4

Лаг Коэффициент автокорреляции уровней
0,063294
–0,961183
–0,036290
0,964735
0,050594
–0,976516
–0,069444
0,964629
0,162064
-0,972918
-0,065323
0,985761

Коррелограмма:

Рис. 4.5.

Анализ коррелограммы и графика исходных уровней временного ряда позволяет сделать вывод о наличии в изучаемом временном ряде сезонных колебаний периодичностью в четыре квартала.

Моделирование тенденции временного ряда

Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов… линейный тренд: ; гипербола: ;

Моделирование сезонных колебаний

Общий вид аддитивной модели следующий: . (4.3) Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной ()…

Таблица 4.5

№ квартала, Количество правонарушений, Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
657,5
655,25 213,75
665,5 349,5
708,75 693,75 -336,75
709,375 -238,375
718,25 714,125 277,875
689,25 703,75 316,25
689,25 689,25 -299,25
660,5 674,875 -319,875
678,25 669,375 322,625
690,625 214,375
-233
690,5 687,75 -233,75

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 4.5). Используем эти оценки для расчета значений сезонной компоненты (табл. 4.6). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Таблица 4.6

Показатели Год № квартала,
I II III IV
  213,75 349,5
-336,75 -238,375 277,875 316,25
-299,25 -319,875 322,625 214,375
-233 -233,75
Всего за -й квартал   -869 -792 814,25 880,125
Средняя оценка сезонной компоненты для -го квартала,   -289,667 -264 271,417 293,375
Скорректированная сезонная компонента,   -292,448 -266,781 268,636 290,593

Для данной модели имеем:

.

Корректирующий коэффициент: .

Рассчитываем скорректированные значения сезонной компоненты () и заносим полученные данные в таблицу 4.6.

Проверим равенство нулю суммы значений сезонной компоненты:

.

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины (гр. 4 табл. 4.7). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Таблица 4.7

-292,448 667,448 672,700 380,252 -5,252 27,584
-266,781 637,781 673,624 406,843 -35,843 1284,721
268,636 600,364 674,547 943,183 -74,183 5503,117
290,593 724,407 675,470 966,063 48,937 2394,830
-292,448 649,448 676,394 383,946 -26,946 726,087
-266,781 737,781 677,317 410,536 60,464 3655,895
268,636 723,364 678,240 946,876 45,124 2036,175
290,593 729,407 679,163 969,756 50,244 2524,460
-292,448 682,448 680,087 387,639 2,361 5,574
-266,781 621,781 681,010 414,229 -59,229 3508,074
268,636 723,364 681,933 950,569 41,431 1716,528
290,593 614,407 682,857 973,450 -68,450 4685,403
-292,448 753,448 683,780 391,332 69,668 4853,630
-266,781 720,781 684,703 417,922 36,078 1301,622
268,636 651,364 685,627 954,263 -34,263 1173,953
290,593 636,407 686,550 977,143 -50,143 2514,320

Шаг 4. Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда () с помощью линейного тренда. Результаты аналитического выравнивания следующие:

.

Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 4.7).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 4.7).

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Рис. 4.6.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.

Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда количества правонарушений по кварталам за 4 года.

Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года. Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом,

;

.

Т.е. в первые два квартала 2003 г. следовало ожидать порядка 395 и 422 правонарушений соответственно.

Построение мультипликативной модели рассмотрим на данных предыдущего примера.

Шаг 1. Методика, применяемая на этом шаге, полностью совпадает с методикой построения аддитивной модели.

Таблица 4.8

№ квартала, Количество правонарушений, Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
657,5
655,25 1,3262
665,5 1,5252
708,75 693,75 0,5146
709,375 0,6640
718,25 714,125 1,3891
689,25 703,75 1,4494
689,25 689,25 0,5658
660,5 674,875 0,5260
678,25 669,375 1,4820
690,625 1,3104
0,6643
690,5 687,75 0,6601

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 4.8). Эти оценки используются для расчета сезонной компоненты (табл. 4.9). Для этого найдем средние за каждый квартал оценки сезонной компоненты . Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Таблица 4.9

Показатели Год № квартала,
I II III IV
  1,3262 1,5252
0,5146 0,6640 1,3891 1,4494
0,5658 0,5260 1,4820 1,3104
0,6643 0,6601
Всего за -й квартал   1,7447 1,8501 4,1973 4,2850
Средняя оценка сезонной компоненты для -го квартала,   0,5816 0,6167 1,3991 1,4283
Скорректированная сезонная компонента,   0,5779 0,6128 1,3901 1,4192

Имеем

.

Определяем корректирующий коэффициент:

.

Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки на корректирующий коэффициент .

Проверяем условие равенство 4 суммы значений сезонной компоненты:

.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 4.10), которые содержат только тенденцию и случайную компоненту.

Таблица 4.10

0,5779 648,9012 654,9173 378,4767 0,9908
0,6128 605,4178 658,1982 403,3439 0,9198
1,3901 625,1349 661,4791 919,5221 0,9451
1,4192 715,1917 664,7600 943,4274 1,0759
0,5779 617,7539 668,0409 386,0608 0,9247
0,6128 768,6031 671,3218 411,3860 1,1449
1,3901 713,6177 674,6027 937,7652 1,0578
1,4192 718,7148 677,8836 962,0524 1,0602
0,5779 674,8572 681,1645 393,6450 0,9907
0,6128 579,3081 684,4454 419,4281 0,8464
1,3901 713,6177 687,7263 956,0083 1,0377
1,4192 637,6832 691,0072 980,6774 0,9228
0,5779 797,7159 694,2881 401,2291 1,1490
0,6128 740,8616 697,5690 427,4703 1,0621
1,3901 661,8229 700,8499 974,2515 0,9443
1,4192 653,1849 704,1308 999,3024 0,9277

Шаг 4. Определим компоненту в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни . В результате получим уравнение тренда:

.

Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 4.10).

Шаг 5. Найдем уровни ряда, умножив значения на соответствующие значения сезонной компоненты (гр. 6 табл. 4.10). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Рис. 4.7.

Расчет ошибки в мультипликативной модели производится по формуле:

.

Для сравнения мультипликативной модели и других моделей временного ряда можно, по аналогии с аддитивной моделью, использовать сумму квадратов абсолютных ошибок :

Сравнивая показатели детерминации аддитивной и мультипликативной моделей, делаем вывод, что они примерно одинаково аппроксимируют исходные данные.

Шаг 6. Прогнозирование по мультипликативной модели. Если предположить, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года, прогнозное значение уровня временного ряда в мультипликативной модели есть произведение трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом

;

.

Т.е. в первые два квартала 2003 г. следовало ожидать порядка 409 и 436 правонарушений соответственно.

Таким образом, аддитивная и мультипликативная модели дают примерно одинаковый результат по прогнозу.

Автокорреляция в остатках. Критерий Дарбина-Уотсона

1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. 2. В ряде случаев автокорреляция может быть следствием неправильной… От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной…

Случайные переменные

Дискретная случайная переменная

Мы начнем непосредственно с дискретных случайных переменных. Случайная переменная – это любая переменная, значение которой не может быть точно… Продолжая разговор о примере с двумя игральными костями, предположим, что одна… Таблица A.1 Красная Зеленая …

Математическое ожидание дискретной случайной величины

Предположим, что может принимать конкретных значений и что вероятность получения равна . Тогда . (A.1) В случае с двумя костями величинами от до были числа от 2 до 12. Математическое ожидание рассчитывается так:

Математические ожидания функций дискретных случайных переменных

, (A.3) где суммирование производится по всем возможным значениям . В табл. A.3… Таблица A.3 Вероятность Функция от Функция, взвешенная по вероятности …

Правила расчета математического ожидания

Правило 1. Математическое ожидание суммы нескольких переменных равно сумме их математических ожиданий. Например, если имеются три случайные… . (A.4) Правило 2. Если случайная переменная умножается на константу, то ее математическое ожидание умножается на ту же…

Теоретическая дисперсия дискретной случайной переменной

. (A.8) Из можно получить – среднее квадратическое отклонение – столь же… Мы проиллюстрируем расчет дисперсии на примере с одной игральной костью. Поскольку , то в этом случае равно . Мы…

Вероятность в непрерывном случае

С дискретными случайными переменными очень легко обращаться, поскольку они по определению принимают значения из некоторого конечного набора. Каждое из этих значений связано с определенной вероятностью, характеризующей его «вес». Если эти «веса» известны, то не составит труда рассчитать теоретическое среднее (математическое ожидание) и дисперсию.

Вы можете представить указанные «веса» как определенные количества «пластичной массы», равные вероятностям соответствующих значений. Сумма вероятностей и, следовательно, суммарный «вес» этой «массы» равен единице. Это показано на рис. A.1 для примера, где величина есть сумма очков, выпавших при бросании двух игральных костей. Величина принимает значения от 2 до 12, и для всех этих значений показано количество соответствующей «массы».

Рис. A.1.

К сожалению, анализ часто проводится для непрерывных случайных величин, которые могут принимать бесконечное число значений. Поскольку невозможно представить себе «пластичную массу», разделенную на бесконечное число частей, используем далее другой подход.

Проиллюстрируем наши рассуждения на примере температуры в комнате. Для определенности предположим, что она меняется в пределах от 55 до 75° по Фаренгейту, и вначале допустим, что все значения в этом диапазоне равновероятны.

Поскольку число различных значений, принимаемых показателем температуры, бесконечно, здесь бессмысленно пытаться разделить «пластичную массу» на малые части. Вместо этого можно «размазать» ее по всему диапазону. Поскольку все температуры от 55 до 75° F равновероятны, она должна быть «размазана» равномерно, как это показано на рис. A.2.

Рис. A.2.

В этом примере, как и во всех остальных, мы будем полагать, что «пластичная масса размазана» на единичной площади. Это связано с тем, что совокупная вероятность всегда равняется единице. В данном случае наша «масса» покрыла прямоугольник, и поскольку основание этого прямоугольника равно 20, его высота определяется из соотношения:

, (A.10)

так как произведение основания и высоты равно площади. Следовательно, высота равна 0,05, как это показано на рисунке.

Найдя высоту прямоугольника, мы можем ответить на вопросы типа: с какой вероятностью температура будет находиться в диапазоне от 65 до 70°F? Ответ определяется величиной «замазанной» площади (или, говоря более формально, совокупной вероятностью), лежащей в диапазоне от 65 до 70°F, представленной заштрихованной фигурой на рис. A.3. Основание заштрихованного прямоугольника равно 5, его высота равна 0,05 и, соответственно, площадь – 0,25. Искомая вероятность равна 1/4, что в любом случае очевидно, поскольку промежуток от 65 до 70°F составляет 1/4 всего диапазона.

Рис. A.3.

Высота заштрихованной площади представляет то, что формально называется плотностью вероятности в этой точке, и если эта высота может быть записана как функция значений случайной переменной, то эта функция называется функцией плотности вероятности. В нашем примере она записывается как , где – температура, и

. (A.11)

В качестве первого приближения функция плотности вероятности показывает вероятность нахождения случайной переменной внутри единичного интервала вокруг данной точки. В нашем примере эта функция всюду равна 0,05, откуда вытекает, что температура находится, например, между 60 и 61°F с вероятностью 0,05.

В нашем случае график функции плотности вероятности горизонтален, и ее указанная интерпретация точна, однако в общем случае эта функция непрерывно меняется, и ее интерпретация дает лишь приближение. Далее мы рассмотрим пример, когда эта функция непостоянна, поскольку не все температуры равновероятны. Предположим, что центральное отопление работает таким образом, что температура никогда не падает ниже 65°F, а в жаркие дни температура превосходит этот уровень, не превышая, как и ранее, 75°F. Мы будем считать, что плотность вероятности максимальна при температуре 65°F и далее она равномерно убывает до нуля при 75°F (рис. A.4).

Рис. A.4.

Общая «замазанная» площадь, как всегда, равна единице, поскольку совокупная вероятность равна единице. Площадь треугольника равна половине произведения основания на высоту, поэтому получаем:

, (A.12)

и высота при 65°F равна 0,20.

Предположим вновь, что мы хотим знать вероятность нахождения температуры в промежутке между 65 и 70°F. Она представлена заштрихованной площадью на рис. A.5, и если вы немного помните геометрию, то сможете проверить, что она равна 0,75. Если вы предпочитаете процентное измерение, то это означает, что с вероятностью 75% температура попадет в диапазон 65-70°F и только с вероятностью 25% – в диапазон 70-75°F.

Рис. A.5.

В данном случае функция плотности вероятности записывается как , где

. (A.13)

Прежде чем продолжить изложение, упомянем о хорошей и плохой новостях. «Плохая новость» – это то, что если вы хотите рассчитать вероятности для более сложных функций с криволинейными графиками, то элементарная геометрия становится неприменимой. Вообще говоря, вы должны воспользоваться интегральным исчислением или специальными таблицами (если последние существуют). Интегральное исчисление используется также и при определении математического ожидания и дисперсии непрерывной случайной величины.

«Хорошая новость» – в том, что специальные таблицы существуют для всех функций, которые будут интересовать нас на практике. Кроме того, математическое ожидание и дисперсия имеют практически тот же смысл для непрерывных случайных величин, что и для дискретных, для них верны те же самые правила.

Постоянная и случайная составляющие случайной переменной

, (A.14) где – чисто случайная составляющая. Конечно, можно было бы посмотреть на это по-другому и сказать, что случайная составляющая определяется как разность…

Способы оценивания и оценки

Однако на практике, за исключением искусственно простых случайных величин (таких, как число выпавших очков при бросании игральной кости), мы не… Процедура оценивания всегда одинакова. Берется выборка из наблюдений, и с… В табл. A.6 приведены формулы оценивания для двух важнейших характеристик генеральной совокупности. Выборочное среднее…

Оценки как случайные величины

. Выше мы показали, что величина в -м наблюдении может быть разложена на две… . (A.17)

Рис. A.6.

Величина – оценка теоретической дисперсии – также является случайной переменной. Вычитая (A.18) из (A.17), имеем:

.

Следовательно,

.

Таким образом, зависит от (и только от) чисто случайной составляющей наблюдений в выборке. Поскольку эти составляющие меняются от выборки к выборке, также от выборки к выборке меняется и величина оценки .

Несмещенность

Хотя это и неизбежно, на интуитивном уровне желательно, тем не менее, чтобы оценка в среднем за достаточно длительный период была аккуратной.… Начнем с выборочного среднего. Является ли оно несмещенной оценкой… Величина включает две составляющие – и . Значение равно средней чисто случайных составляющих величин в выборке, и,…

Эффективность

Предположим, что мы имеем две оценки теоретического среднего, рассчитанные на основе одной и той же информации, что обе они являются несмещенными и…

Рис. A.7.

Важно заметить, что мы использовали здесь слово «скорее». Даже хотя оценка более эффективна, это не означает, что она всегда дает более точное значение. При определенном стечении обстоятельств значение оценки может быть ближе к истине. Однако вероятность того, что оценка окажется более точной, чем , составляет менее 50%.

Это напоминает вопрос о том, пользоваться ли ремнями безопасности при управлении автомобилем. Множество обзоров в разных странах показало, что значительно менее вероятно погибнуть или получить увечья в дорожном происшествии, если воспользоваться ремнями безопасности. В то же время не раз отмечались странные случаи, когда не сделавший этого индивид чудесным образом уцелел, но погиб бы, будучи пристегнут ремнями. Упомянутые обзоры не отрицают этого. В них лишь делается вывод, что преимущество на стороне тех, кто пользуется ремнями безопасности. Подобным же преимуществом обладает и эффективная оценка. (Неприятный комментарий: в тех странах, где пользование ремнями безопасности сделано обязательным, сократилось предложение для трансплантации почек людей, ставших жертвами аварий.)

Мы говорили о желании получить оценку как можно с меньшей дисперсией, и эффективная оценка – это та, у которой дисперсия минимальна. Сейчас мы рассмотрим дисперсию обобщенной оценки теоретического среднего и покажем, что она минимальна в том случае, когда оба наблюдения имеют равные веса.

Если наблюдения и независимы, теоретическая дисперсия обобщенной оценки равна:

. (A.21)

Мы уже выяснили, что для несмещенности оценки необходимо равенство единице суммы и . Следовательно, для несмещенных оценок и

. (A.22)

Поскольку мы хотим выбрать так, чтобы минимизировать дисперсию, нам нужно минимизировать при этом . Эту задачу можно решить графически или с помощью дифференциального исчисления. В любом случае минимум достигается при . Следовательно, также равно 0,5.

Итак, мы показали, что выборочное среднее имеет наименьшую дисперсию среди оценок рассматриваемого типа. Это означает, что оно имеет наиболее «сжатое» вероятностное распределение вокруг истинного среднего и, следовательно (в вероятностном смысле), наиболее точно. Строго говоря, выборочное среднее – это наиболее эффективная оценка среди всех несмещенных оценок. Конечно, мы показали это только для случая с двумя наблюдениями, но сделанные выводы верны для выборок любого размера, если наблюдения не зависят друг от друга.

Два заключительных замечания: во-первых, эффективность оценок можно сравнивать лишь тогда, когда они используют одну и ту же информацию, например один и тот же набор наблюдений нескольких случайных переменных. Если одна из оценок использует в 10 раз больше информации, чем другая, то она вполне может иметь меньшую дисперсию, но было бы неправильно считать ее более эффективной. Во-вторых, мы ограничиваем понятие эффективности сравнением распределений несмещенных оценок. Существуют определения эффективности, обобщающие это понятие на случай возможного сравнения смещенных оценок, но в этом пособии мы придерживаемся данного простого определения.

Противоречия между несмещенностью и минимальной дисперсией

В данном обзоре мы уже выяснили, что для оценки желательны несмещенность и наименьшая возможная дисперсия. Эти критерии совершенно различны, и иногда они могут противоречить друг другу. Может случиться так, что имеются две оценки теоретической характеристики, одна из которых является несмещенной (на рис. A.8), другая же смещена, но имеет меньшую дисперсию ().

Рис. A.8.

Оценка хороша своей несмещенностью, но преимуществом оценки является то, что ее значения практически всегда близки к истинному значению. Какую из них вы бы выбрали?

Данный выбор зависит от обстоятельств. Если возможные ошибки вас не очень тревожат при условии, что за длительный период они «погасят» друг друга, то, по-видимому, вы выберете . С другой стороны, если для вас приемлемы малые ошибки, но неприемлемы большие, то вам следует выбрать .

Формально говоря, выбор определяется функцией потерь, стоимостью сделанной ошибки как функцией ее размера. Обычно выбирают оценку, дающую наименьшее ожидание потерь, и делается это путем взвешивания функции потерь по функции плотности вероятности. (Если вы не любите риск, то можете также пожелать учесть дисперсию потерь.)

Влияние увеличения размера выборки на точность оценок

Ответ неудивителен: при увеличении оценка , вообще говоря, становится более точной. В единичном эксперименте большая по размеру выборка… Это показано на рис. A.9. Мы предполагаем, что нормально распределена со…

Рис. A.9.

Чем больше размер выборки, тем уже и выше будет график функции плотности вероятности для . Если становится действительно большим, то график функции плотности вероятности будет неотличим от вертикальной прямой, соответствующей . Для такой выборки случайная составляющая становится действительно очень малой, и поэтому обязательно будет очень близкой к . Это вытекает из того факта, что стандартное отклонение , равное , становится очень малым при больших .

В пределе, при стремлении к бесконечности, стремится к нулю и стремится в точности к .

Состоятельность

В большинстве конкретных случаев несмещенная оценка является и состоятельной. Для этого можно построить контрпримеры, но они, как правило, будут… Иногда бывает, что оценка, смещенная на малых выборках, является состоятельной…

Рис. A.10.

Оценки, типа показанных на рис. A.10, весьма важны в регрессионном анализе. Иногда невозможно найти оценку, несмещенную на малых выборках. Если при этом вы можете найти хотя бы состоятельную оценку, это может быть лучше, чем не иметь никакой оценки, особенно если вы можете предположить направление смещения на малых выборках.

Нужно, однако, иметь в виду, что состоятельная оценка в принципе может на малых выборках работать хуже, чем несостоятельная (например, иметь большую среднеквадратичную ошибку), и поэтому требуется осторожность. Подобно тому, как вы можете предпочесть смещенную оценку несмещенной, если ее дисперсия меньше, вы можете предпочесть состоятельную, но смещенную оценку несмещенной или несостоятельную оценку им обеим (также в случае меньшей дисперсии).


Приложение B

Тестовые задания

Парная регрессия и корреляция

1. Наиболее наглядным видом выбора уравнения парной регрессии является:

а) аналитический;

б) графический;

в) экспериментальный (табличный).

2. Рассчитывать параметры парной линейной регрессии можно, если у нас есть:

а) не менее 5 наблюдений;

б) не менее 7 наблюдений;

в) не менее 10 наблюдений.

3. Суть метода наименьших квадратов состоит в:

а) минимизации суммы остаточных величин;

б) минимизации дисперсии результативного признака;

в) минимизации суммы квадратов остаточных величин.

4. Коэффициент линейного парного уравнения регрессии:

а) показывает среднее изменение результата с изменением фактора на одну единицу;

б) оценивает статистическую значимость уравнения регрессии;

в) показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.

На основании наблюдений за 50 семьями построено уравнение регрессии , где – потребление, – доход. Соответствуют ли знаки и значения коэффициентов регрессии теоретическим представлениям?

а) да;

б) нет;

в) ничего определенного сказать нельзя.

6. Суть коэффициента детерминации состоит в следующем:

а) оценивает качество модели из относительных отклонений по каждому наблюдению;

б) характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака;

в) характеризует долю дисперсии , вызванную влиянием не учтенных в модели факторов.

7. Качество модели из относительных отклонений по каждому наблюдению оценивает:

а) коэффициент детерминации ;

б) -критерий Фишера;

в) средняя ошибка аппроксимации .

8. Значимость уравнения регрессии в целом оценивает:

а) -критерий Фишера;

б) -критерий Стьюдента;

в) коэффициент детерминации .

9. Классический метод к оцениванию параметров регрессии основан на:

а) методе наименьших квадратов:

б) методе максимального правдоподобия:

в) шаговом регрессионном анализе.

10. Остаточная сумма квадратов равна нулю:

а) когда правильно подобрана регрессионная модель;

б) когда между признаками существует точная функциональная связь;

в) никогда.

11. Объясненная (факторная) сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:

а) ;

б) ;

в) .

12. Остаточная сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:

а) ;

б) ;

в) .

13. Общая сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:

а) ;

б) ;

в) .

14. Для оценки значимости коэффициентов регрессии рассчитывают:

а) -критерий Фишера;

б) -критерий Стьюдента;

в) коэффициент детерминации .

15. Какое уравнение регрессии нельзя свести к линейному виду:

а) ;

б) :

в) .

16. Какое из уравнений является степенным:

а) ;

б) :

в) .

17. Параметр в степенной модели является:

а) коэффициентом детерминации;

б) коэффициентом эластичности;

в) коэффициентом корреляции.

18. Коэффициент корреляции может принимать значения:

а) от –1 до 1;

б) от 0 до 1;

в) любые.

19. Для функции средний коэффициент эластичности имеет вид:

а) ;

б) ;

в) .

20. Какое из следующих уравнений нелинейно по оцениваемым параметрам:

а) ;

б) ;

в) .

Множественная регрессия и корреляция

а) уменьшает значение коэффициента детерминации; б) увеличивает значение коэффициента детерминации; в) не оказывает никакого влияние на коэффициент детерминации.

Системы эконометрических уравнений

а) системы независимых уравнений; б) системы рекурсивных уравнений; в) системы взаимозависимых уравнений.

Временные ряды

а) ; б) ; в) .

Приложение C

Вопросы к экзамену

1. Определение эконометрики. Эконометрический метод и этапы эконометрического исследования.

2. Парная регрессия. Способы задания уравнения парной регрессии.

3. Линейная модель парной регрессии. Смысл и оценка параметров.

4. Оценка существенности уравнения в целом и отдельных его параметров (-критерий Фишера и -критерий Стьюдента).

5. Прогноз по линейному уравнению регрессии. Средняя ошибка аппроксимации.

6. Нелинейная регрессия. Классы нелинейных регрессий.

7. Регрессии нелинейные относительно включенных в анализ объясняющих переменных.

8. Регрессии нелинейные по оцениваемым параметрам.

9. Коэффициенты эластичности для разных видов регрессионных моделей.

10. Корреляция и -критерий Фишера для нелинейной регрессии.

11. Отбор факторов при построении уравнения множественной регрессии.

12. Оценка параметров уравнения множественной регрессии.

13. Множественная корреляция.

14. Частные коэффициенты корреляции.

15. -критерий Фишера и частный -критерий Фишера для уравнения множественной регрессии.

16. -критерий Стьюдента для уравнения множественной регрессии.

17. Фиктивные переменные во множественной регрессии.

18. Предпосылки МНК: гомоскедастичность и гетероскедастичность.

19. Предпосылки МНК: автокорреляция остатков.

20. Обобщенный МНК.

21. Общие понятия о системах эконометрических уравнений.

22. Структурная и приведенная формы модели.

23. Проблема идентификации. Необходимое условие идентифицируемости.

24. Проблема идентификации. Достаточное условие идентифицируемости.

25. Методы оценки параметров структурной формы модели.

26. Основные элементы временного ряда.

27. Автокорреляция уровней временного ряда и выявление его структуры.

28. Моделирование сезонных колебаний: аддитивная модель временного ряда.

29. Моделирование сезонных колебаний: мультипликативная модель временного ряда.

30. Критерий Дарбина-Уотсона.


Приложение D

Варианты индивидуальных заданий

D.1. Парная регрессия и корреляция

Таблица D.1 Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная … Требуется: 1.Построить линейное уравнение парной регрессии от .

Решение

Таблица D.2   … ; .

Рис. D.1.

Варианты индивидуальных заданий

Задача 1. По территориям региона приводятся данные за 199X г. (см. таблицу своего варианта).

Требуется:

1.Построить линейное уравнение парной регрессии от .

2.Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.

3.Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4.Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.

5.Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6.На одном графике построить исходные данные и теоретическую прямую.

Вариант 1

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

Вариант 2

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

 

Вариант 3

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

Вариант 4

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

 

Вариант 5

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

Вариант 6

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

 

Вариант 7

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

Вариант 8

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

 

Вариант 9

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

 

Вариант 10

Номер региона Среднедушевой прожиточный минимум в день одного трудоспособного, руб., Среднедневная заработная плата, руб.,

D.2. Множественная регрессия и корреляция

Требуется: 1.Построить линейную модель множественной регрессии. Записать… 2.Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.

Решение

Найдем средние квадратические отклонения признаков: ; ;

Варианты индивидуальных заданий

По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%) (смотри таблицу своего варианта).

Требуется:

1.Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.

2.Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.

3.Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.

4.С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .

5.С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .

6.Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Вариант 1

Номер предприятия Номер предприятия
3,6 6,3
3,6 6,4
3,9
4,1 7,5
3,9 7,9
4,5 8,2
5,3
5,3 8,6
5,6 9,5
6,8

Вариант 2

Номер предприятия Номер предприятия
3,5 6,3
3,6 6,4
3,9
4,1 7,5
4,2 7,9
4,5 8,2
5,3 8,4
5,3 8,6
5,6 9,5

Вариант 3

Номер предприятия Номер предприятия
3,7 6,3
3,7 6,4
3,9 7,2
4,1 7,5
4,2 7,9
4,9 8,1
5,3 8,4
5,1 8,6
5,6 9,5
6,1 9,5

Вариант 4

Номер предприятия Номер предприятия
3,5 6,3
3,6 6,5
3,9 7,2
4,1 7,5
4,2 7,9
4,5 8,2
5,3 8,4
5,5 8,6
5,6 9,5
6,1 9,6

Вариант 5

Номер предприятия Номер предприятия
3,6 6,3
3,6 6,9
3,7 7,2
4,1 7,8
4,3 8,1
4,5 8,2
5,4 8,4
5,5 8,8
5,8 9,5
6,1 9,7

Вариант 6

Номер предприятия Номер предприятия
3,5 6,3
3,6 6,8
3,8 7,2
4,2 7,9
4,3 8,1
4,7 8,3
5,4 8,4
5,6 8,8
5,9 9,6
6,1 9,7

 

Вариант 7

Номер предприятия Номер предприятия
3,8 6,8
3,8 7,4
3,9 7,8
4,1 7,5
4,6 7,9
4,5 8,1
5,3 8,4
5,5 8,7
6,1 9,5
6,8 9,7

Вариант 8

Номер предприятия Номер предприятия
3,8 7,1
4,1 7,5
4,3 7,8
4,1 7,6
4,6 7,9
4,7 8,1
5,3 8,5
5,5 8,7
6,9 9,6
6,8 9,8

Вариант 9

Номер предприятия Номер предприятия
3,9 7,1
4,2 7,5
4,3 7,8
4,4 7,9
4,6 8,1
4,8 8,4
5,3 8,6
5,7 8,8
6,9 9,6
6,8 9,9

 

Вариант 10

Номер предприятия Номер предприятия
3,6 7,2
4,1 7,6
4,3 7,8
4,4 7,9
4,5 8,2
4,8 8,4
5,3 8,6
5,6 8,8
6,7 9,2
6,9 9,6

D.3. Системы эконометрических уравнений

Пример решения типовой задачи смотри в разделе 3.

Варианты индивидуальных заданий

Даны системы эконометрических уравнений.

Требуется

1.Применив необходимое и достаточное условие идентификации, определите, идентифицируемо ли каждое из уравнений модели.

2.Определите метод оценки параметров модели.

3.Запишите в общем виде приведенную форму модели.

Вариант 1

Модель протекционизма Сальватора (упрощенная версия):

где – доля импорта в ВВП; – общее число прошений об освобождении от таможенных пошлин; – число удовлетворенных прошений об освобождении от таможенных пошлин; – фиктивная переменная, равная 1 для тех лет, в которые курс доллара на международных валютных рынках был искусственно завышен, и 0 – для всех остальных лет; – реальный ВВП; – реальный объем чистого экспорта; – текущий период; – предыдущий период.

Вариант 2

Макроэкономическая модель (упрощенная версия модели Клейна):

где – потребление; – инвестиции; – доход; – налоги; – запас капитала; – текущий период; – предыдущий период.

Вариант 3

Макроэкономическая модель экономики США (одна из версий):

где – потребление; – ВВП; – инвестиции; – процентная ставка; – денежная масса; – государственные расходы; – текущий период; – предыдущий период.

Вариант 4

Модель Кейнса (одна из версий):

где – потребление; – ВВП; – валовые инвестиции; – государственные расходы; – текущий период; – предыдущий период.

Вариант 5

Модель денежного и товарного рынков:

где – процентные ставки; – реальный ВВП; – денежная масса; – внутренние инвестиции; – реальные государственные расходы.

Вариант 6

Модифицированная модель Кейнса:

где – потребление; – доход; – инвестиции; – государственные расходы; – текущий период; – предыдущий период.

Вариант 7

Макроэкономическая модель:

где – расходы на потребление; – чистый национальный продукт; – чистый национальный доход; – инвестиции; – косвенные налоги; – государственные расходы; – текущий период; – предыдущий период.

Вариант 8

Гипотетическая модель экономики:

где – совокупное потребление в период ; – совокупный доход в период ; – инвестиции в период ; – налоги в период ; – государственные доходы в период .

Вариант 9

Модель денежного рынка:

где – процентные ставки; – ВВП; – денежная масса; – внутренние инвестиции.

Вариант 10

Конъюнктурная модель имеет вид:

где – расходы на потребление; – ВВП; – инвестиции; – процентная ставка; – денежная масса; – государственные расходы; – текущий период; – предыдущий период.

D.4. Временные ряды

Пример решения типовой задачи смотри в разделе 4.

Варианты индивидуальных заданий

Имеются условные данные об объемах потребления электроэнергии () жителями региона за 16 кварталов.

Требуется:

1.Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

2.Построить аддитивную модель временного ряда (для нечетных вариантов) или мультипликативную модель временного ряда (для четных вариантов).

3.Сделать прогноз на 2 квартала вперед.

Варианты 1, 2

5,8 7,9
4,5 5,5
5,1 6,3
9,1 10,8
7,0 9,0
5,0 6,5
6,0 7,0
10,1 11,1

Варианты 3, 4

5,5 8,0
4,6 5,6
5,0 6,4
9,2 10,9
7,1 9,1
5,1 6,4
5,9 7,2
10,0 11,0

Варианты 5, 6

5,3 8,2
4,7 5,5
5,2 6,5
9,1 11,0
7,0 8,9
5,0 6,5
6,0 7,3
10,1 11,2

Варианты 7, 8

5,5 8,3
4,8 5,4
5,1 6,4
9,0 10,9
7,1 9,0
4,9 6,6
6,1 7,5
10,0 11,2

Варианты 9, 10

5,6 8,2
4,7 5,6
5,2 6,4
9,1 10,8
7,0 9,1
5,1 6,7
6,0 7,5
10,2 11,3

Приложение Е

Математико-статистические таблицы

  E.2. Критические значения -критерия Стьюдента при уровне значимости 0,10,…  

E.3. Значения статистик Дарбина-Уотсона при 5%-ном уровне значимости

Литература

Основная:

1.Эконометрика: Учебник / Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2002. – 344 с.

2.Практикум по эконометрике: Учебн. пособие / Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2003. – 192 с.

3.Доугерти К. Введение в эконометрику: Пер. с англ. – М.: ИНФРА-М, 1999. – 402 с.

Дополнительная:

4.Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для вузов / Под ред. проф. Н.Ш. Кремера. – М.: ЮНИТИ-ДАНА, 2002. – 311 с.

5.Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс: Учебник. – М.: Дело, 2001. – 400 с.

6.Катышев П.К., Магнус Я.Р., Пересецкий А.А. Сборник задач к начальному курсу эконометрики. – М.: Дело, 2002. – 208 с.

7.Прикладная статистика. Основы эконометрики: Учебник для вузов: В 2-х т. – Т. 1. Айвазян С.А., Мхитарян В.С. Теория вероятностей и прикладная статистика. – М: ЮНИТИ-ДАНА, 2001. – 656 с.

8.Прикладная статистика. Основы эконометрики: Учебник для вузов: В 2-х т. – Т. 2. Айвазян С.А. Основы эконометрики. – М: ЮНИТИ-ДАНА, 2001. – 432 с.

9.Эконометрика: Учебник / Тихомиров Н.П., Дорохина Е.Ю. – М.: Издательство «Экзамен», 2003. – 512 с.

10.Сборник задач по эконометрике: Учебное пособие для студентов экономических вузов / Сост. Е.Ю. Дорохина, Л.Ф. Преснякова, Н.П. Тихомиров. – М.: Издательство «Экзамен», 2003. – 224 с.

11.Кулинич Е.И. Эконометрия. – М.: Финансы и статистика, 2001. – 304 с.

12.Эконометрика: Учебн. пособие для вузов / А.И. Орлов – М.: Издательство «Экзамен», 2002. – 576 с.

13.Мардас А.Н. Эконометрика. – СПб: Питер, 2001. – 144 с.

14.Гмурман В.Е. Теория вероятностей и математическая статистика: Учебн. пособие для вузов. – М.: Высш. шк., 2002. – 479 с.

 


[1] Frisch R. Editorial. Econometrica. – 1933. – № 1. – P. 2.

[2] Более подробно смотри Приложение A.

[3] Данные примера взяты из [5]

[4] Подробнее об автокорреляции см. в разделе 4.

[5] За основу приложения А взят учебник [4].

– Конец работы –

Используемые теги: Эконометрика0.041

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ЭКОНОМЕТРИКА

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Лекция 1. Предмет, задачи и методы эконометрики
Цели и задачи изучения темы... изучить предмет задачи и методы эконометрики... Основные понятия эконометрики Измерения в экономике Наблюдение сводка и группировка статистических данных...

ГОТОВЫЕ КОНТРОЛЬНЫЕ ПО МАТЕМАТИКЕ Эконометрика
Федеральное агентство по образованию... Санкт Петербургский государственный... Университет сервиса и экономики...

ЭКОНОМЕТРИКА
ЭКОНОМЕТРИКА Методические указания к выполнению контрольной работы... Цель дисциплины... Цель дисциплины Эконометрика заключается в том чтобы дать студентам представление о содержании эконометрики как...

Курс лекций по дисциплине Эконометрика. В последнее время специалисты
Введение... В последнее время специалисты обладающие знаниями и навыками проведения прикладного экономического анализа с...

ЭКОНОМЕТРИКА
САНКТ ПЕТЕРБУРГСКИЙ... ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ... ЭКОНОМЕТРИКА Санкт Петербург...

КОНСПЕКТ ЛЕКЦИЙ ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ И СТАТИСТИКИ, ИСПОЛЬЗУЕМЫЕ В ЭКОНОМЕТРИКЕ
КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ... ФИНАНСОВО ЭКОНОМИЧЕСКИЙ ИНСТИТУТ... Кафедра статистики и эконометрики...

ЛЕКЦИЯ 1 1. Под редакцией И. И. Елисеевой Эконометрика, М,: Финансы и статистика, -2001 г
СПИСОК ЛИТЕРАТУРЫ... Под редакцией И И Елисеевой Эконометрика М Финансы и статистика г Под редакцией И И Елисеевой Практикум по эконометрике М Финансы и статистика г...

Эконометрика
Г М Булдык... Эконометрика...

Эконометрика
Г М Булдык... Эконометрика...

ЭКОНОМЕТРИКА
Российская экономическая академия имени Г В Плеханова... ЭКОНОМЕТРИКА Москва...

0.035
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • ЭКОНОМЕТРИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ... Кафедра ИС и ПМ...
  • ЭКОНОМЕТРИКА КАК НАУКА ЭКОНОМЕТРИКА КАК НАУКА... КОРРЕЛЯЦИЯ ВЫЧИСЛЕНИЕ КОЭФФИЦИЕНТОВ... ЛИНЕЙНАЯ МОДЕЛЬ ПАРНОЙ РЕГРЕССИИ...
  • Эконометрика Приведены таблицы для отыскания критических значений статистик, используемых для проверки гипотез, необходимых в эконометрическом анализе. Пособие… Такую величину называют объясняемой переменной функцией или результативным… Пусть имеется p объясняющих переменных X1, X2 Xp и зависимая переменная Y. Переменная Y - случайная величина, имеющая…
  • Контрольная по эконометрике Линейный коэффициент корреляции чаще всего рассчитывается по формуле: Коэффициент корреляции изменяется в пределах от -1 до +1. Равенство… Знак «+» указывает на связь прямую (увеличение или уменьшение одного признака…
  • Эконометрика Поле корреляции и линия регрессии: Сначала построим поле корреляции – точки с координатами (хi, уi), и принимая во внимание экономические… Используя для этого классический подход, который основан на методе наименьших… Итак, полученный линейный коэффициент корреляции , коэффициент регрессии b1= 0,314 и коэффициент детерминации …