рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математические модели транспортных потоков.

Математические модели транспортных потоков. - раздел Спорт, Разработка проекта организации движения. Известные И Нашедшие Практическое Применение В Организации Дорожного Движения...

Известные и нашедшие практическое применение в организации дорожного движения математические модели можно разделить на две группы в зависимости от подхода: детерминированные и вероятност­ные (стохастические).

К детерминированным относятся модели, в основе которых лежит функциональная зависимость между отдельными показателями, напри­мер, скоростью и дистанцией между автомобилями в потоке. При этом принимается, что все автомобили удалены друг от друга на одинаковое расстояние.

Стохастические модели отличаются большей объективностью. В них транспортный поток рассматривается как вероятностный (случайный) процесс. Например, распределение временных интервалов между ав­томобилями в потоке может приниматься не строго определенным, а случайным.

Детерминированные модели. Простейшей математической моделью, описывающей поток автомобилей, является так называемая упрощен­ная динамическая модель. Ее применяют для определения максималь­но возможной интенсивности движения по одной полосе дороги Na max при скорости va:

где А – коэффициент размерности.

При измерении скорости в километрах в час, а динамического габа­рита в метрах формула (2.2) является выражением для определения про­пускной способности полосы


Данная математическая модель составлена на основании двух уп­рощающих допущений: скорость всех транспортных единиц в потоке одинакова; транспортные средства однотипны, т. е. имеют равные ди­намические габариты. Динамический габарит Lа транспортного сред­ства определяют как сумму длины транспортного средства lа, дистан­ции безопасности d и зазора l0 до остановившегося впереди автомоби­ля. Зазорlо для легковых автомобилей колеблется в пределах 1 – 3 м.

 

В результате изучения транспортных потоков высокой плотности и специальных экспериментов, проведенных американскими специалистами, была предложена теория "следования за лидером", математическим выражением которой является микроскопическая модель транспортного потока. Микроскопической ее называют потому, что она рас­сматривает элемент потока – пару следующих друг за другом автомо­билей. Особенностью этой модели является то, что в ней отражены за­кономерности комплекса ВАДС и, в частности, психологический ас­пект управления автомобилями. Он заключается в том, что при движе­нии в плотном транспортном потоке действия водителя обусловлены изменениями скорости лидирующего (ведущего) автомобиля и дистан­ции до него в данный момент.

 

К моделям, рассматривающим поток в целом и называемым макро­скопическими, относят, например, модели гидродинамической теории.

Наиболее известны две из них, основанные на использовании анало­гии в поведении транспортного потока и потока жидкости. Первая ос­нована на уравнении неразрывности, которое обусловливает постоян­ство количества жидкости при ее протекании по водостоку, и в обозна­чениях, принятых для транспортного потока, в результате преобразо­ваний и упрощений характеризуется зависимостью:


где va – скорость, подлежащая экспериментальному определению; qа mах – плотность транспортного потока при заторе (va = 0).

Вторая гидродинамическая модель использует известное из гидрав­лики понятие о потенциале давления жидкости и предполагает, что дви­жение автомобиля выражается в виде функции некоторого потенциала давления, зависящего от дорожных условий, состояния окружающей среды и психофизиологического состояния водителя.

Стохастические модели. Для решения некоторых задач организации дорожного движения необходимо располагать стохастическими харак­теристиками параметров транспортных потоков в зоне пересечений или на других контролируемых участках дорог. Исследованиями установле­но, что для описания потоков сравнительно малой интенсивности, ха­рактеризующей вероятность проезда определенного числа транспорт­ных средств через сечение дороги, применимо уравнение (распределе­ние) Пуассона



где Pn(t) – вероятность проезда n-го числа автомобилей за время t; λ – основной параметр распределения (интенсивность транспортного потока), авт.с; t – длительность отрезков наблюдения, с; n – число наблюдаемых автомоби­лей.

Практически для целей управления движением более необходимо располагать данными о характере распределения временных интервалов между следующими друг за другом транспортными средствами. Если появление автомобилей характеризуется распределением (2.4), то интер­валы между автомобилями распределены по экспоненциальному закону


где F(t) – плотность распределения

Следует заметить, что в транспортном потоке физически невозмож­но появление интервалов, меньших, чем соответствующие длине ти­пичного транспортного средства (например, 4 – 5 м для потока легко­вых автомобилей). Поэтому более правильным для описания распре­деления временных интервалов оказывается использование модели смещенного экспоненциального закона:

 


 

– Конец работы –

Эта тема принадлежит разделу:

Разработка проекта организации движения.

На сайте allrefs.net читайте: Разработка проекта организации движения....

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математические модели транспортных потоков.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Разработка проекта организации движения.
При проектировании ОДД важно правильно спланировать расположение на участке дорожного движения таких объектов, как: 1. Дорожные знаки (проект организации дорожного движения обязательно дол

Методика обследования интенсивности движения транспортных потоков
Многообразие методов объясняется, с одной стороны, большим числом задач, решаемых с помощью организации движения, и условий, а с другой – постоянным совершенствованием аппаратуры, применяемой для п

Приборы и аппаратура, применяемые для проведения натурных обследований и изучения параметров транспортных потоков.
Для измерения интенсивности транспортных потоков применяют переносную или стационарную аппаратуру, основным элементом которой являются датчики (детекторы), устанавливаемые стационарно или временно

Закон распределения Пуассона при изучении интервалов движения в транспортном потоке.
В транспортном потоке автомобили движутся с разными временными интервалами t, с между автомобилями. Движение потока отражает средний интервал tср. С

Характеристики пешеходных потоков
К основным показателям, характеризующим движение пешеходов относятся его интенсивность, плотность и скорость. Интенсивность пешеходного потока Nпеш колеблется в очень широких пределах в за

Расчетная пропускная способность магистральной улицы.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги