Математические модели транспортных потоков.

Известные и нашедшие практическое применение в организации дорожного движения математические модели можно разделить на две группы в зависимости от подхода: детерминированные и вероятност­ные (стохастические).

К детерминированным относятся модели, в основе которых лежит функциональная зависимость между отдельными показателями, напри­мер, скоростью и дистанцией между автомобилями в потоке. При этом принимается, что все автомобили удалены друг от друга на одинаковое расстояние.

Стохастические модели отличаются большей объективностью. В них транспортный поток рассматривается как вероятностный (случайный) процесс. Например, распределение временных интервалов между ав­томобилями в потоке может приниматься не строго определенным, а случайным.

Детерминированные модели. Простейшей математической моделью, описывающей поток автомобилей, является так называемая упрощен­ная динамическая модель. Ее применяют для определения максималь­но возможной интенсивности движения по одной полосе дороги Na max при скорости va:

где А – коэффициент размерности.

При измерении скорости в километрах в час, а динамического габа­рита в метрах формула (2.2) является выражением для определения про­пускной способности полосы


Данная математическая модель составлена на основании двух уп­рощающих допущений: скорость всех транспортных единиц в потоке одинакова; транспортные средства однотипны, т. е. имеют равные ди­намические габариты. Динамический габарит Lа транспортного сред­ства определяют как сумму длины транспортного средства lа, дистан­ции безопасности d и зазора l0 до остановившегося впереди автомоби­ля. Зазорlо для легковых автомобилей колеблется в пределах 1 – 3 м.

 

В результате изучения транспортных потоков высокой плотности и специальных экспериментов, проведенных американскими специалистами, была предложена теория "следования за лидером", математическим выражением которой является микроскопическая модель транспортного потока. Микроскопической ее называют потому, что она рас­сматривает элемент потока – пару следующих друг за другом автомо­билей. Особенностью этой модели является то, что в ней отражены за­кономерности комплекса ВАДС и, в частности, психологический ас­пект управления автомобилями. Он заключается в том, что при движе­нии в плотном транспортном потоке действия водителя обусловлены изменениями скорости лидирующего (ведущего) автомобиля и дистан­ции до него в данный момент.

 

К моделям, рассматривающим поток в целом и называемым макро­скопическими, относят, например, модели гидродинамической теории.

Наиболее известны две из них, основанные на использовании анало­гии в поведении транспортного потока и потока жидкости. Первая ос­нована на уравнении неразрывности, которое обусловливает постоян­ство количества жидкости при ее протекании по водостоку, и в обозна­чениях, принятых для транспортного потока, в результате преобразо­ваний и упрощений характеризуется зависимостью:


где va – скорость, подлежащая экспериментальному определению; qа mах – плотность транспортного потока при заторе (va = 0).

Вторая гидродинамическая модель использует известное из гидрав­лики понятие о потенциале давления жидкости и предполагает, что дви­жение автомобиля выражается в виде функции некоторого потенциала давления, зависящего от дорожных условий, состояния окружающей среды и психофизиологического состояния водителя.

Стохастические модели. Для решения некоторых задач организации дорожного движения необходимо располагать стохастическими харак­теристиками параметров транспортных потоков в зоне пересечений или на других контролируемых участках дорог. Исследованиями установле­но, что для описания потоков сравнительно малой интенсивности, ха­рактеризующей вероятность проезда определенного числа транспорт­ных средств через сечение дороги, применимо уравнение (распределе­ние) Пуассона



где Pn(t) – вероятность проезда n-го числа автомобилей за время t; λ – основной параметр распределения (интенсивность транспортного потока), авт.с; t – длительность отрезков наблюдения, с; n – число наблюдаемых автомоби­лей.

Практически для целей управления движением более необходимо располагать данными о характере распределения временных интервалов между следующими друг за другом транспортными средствами. Если появление автомобилей характеризуется распределением (2.4), то интер­валы между автомобилями распределены по экспоненциальному закону


где F(t) – плотность распределения

Следует заметить, что в транспортном потоке физически невозмож­но появление интервалов, меньших, чем соответствующие длине ти­пичного транспортного средства (например, 4 – 5 м для потока легко­вых автомобилей). Поэтому более правильным для описания распре­деления временных интервалов оказывается использование модели смещенного экспоненциального закона: