рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Шкалы измерений

Шкалы измерений - раздел Спорт, Практикум по дисциплине спортивная метрология Шкала Измерения – Это Закон, По Которому Численное Значение ...

Шкала измерения – это закон, по которому численное значение присваивается измеряемому результату по мере его возрастания или убывания. Рассмотрим некоторые из применяемых в спорте шкал.

Шкала наименований (номинальная шкала)

Это самая простая из всех шкал. В ней числа выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов (например, нумерация игроков футбольной команды, номер учебной группы). Числа, составляющие шкалу наименований, разрешается менять местами. В этой шкале нет отношений типа «больше-меньше», поэтому некоторые полагают, что применение шкалы наименований не стоит считать измерением. При использовании шкалы наименований могут проводиться только некоторые математические операции. Например, ее числа нельзя складывать или вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Шкала порядка

Есть виды спорта, где результат спортсмена определяется только местом, занятым на соревнованиях (например, единоборства). После таких соревнований ясно, кто из спортсменов сильнее, а кто слабее. Но насколько сильнее или слабее, сказать нельзя. Если три спортсмена заняли соответственно первое, второе и третье места, то каково различие в их спортивном мастерстве, остается неясным: второй спортсмен может быть почти равен первому, а может быть существенно слабее его и быть почти одинаковым с третьим. Места, занимаемые в шкале порядка, называются рангами, а сама шкала называется ранговой или неметрической. В такой шкале составляющие ее числа упорядочены по рангам (т.е. занимаемым местам), но интервалы между ними точно измерить нельзя. В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: «больше-меньше», «лучше-хуже» и т.п.

С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии. Например, рейтинг испытуемых, оценки, выставляемые судьями в фигурном катании, художественной гимнастике.

К рангам шкалы порядка можно применять большее число математических операций, чем к числам шкалы наименований.

Шкала интервалов

Это шкала, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Особенность, отличающая ее от описываемой дальше шкалы отношений, состоит в том, что нулевая точка выбирается произвольно. Примерами могут быть: календарное время (начало летоисчисления в разных календарях устанавливалось по различным причинам), суставной угол (угол в локтевом суставе при полном разгибании предплечья может приниматься равным либо нулю, либо 1800), температура, потенциальная энергия поднятого груза, потенциал электрического поля и др.

Результаты измерений по шкале интервалов можно обрабатывать всеми математическими методами, кроме вычисления отношений. Данные шкалы интервалов дают ответ на вопрос: «На сколько больше?», но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если температура повысилась с 10 до 20 0C, то нельзя сказать, что стало в два раза теплее.

Шкала отношений

Эта шкала отличается от шкалы интервалов тем, что в ней нулевая точка не произвольна, а указывает на полное отсутствие измеряемого признака. Благодаря этому шкала отношений не накладывает никаких ограничений на математический аппарат, используемый для обработки результатов наблюдений.

В спорте по шкале отношений измеряют расстояние, силу, скорость и десятки других переменных. По шкале отношений измеряют и те величины, которые образуются как разности чисел, отсчитанных по шкале интервалов. Так, календарное время отсчитывается по шкале интервалов, а интервалы времени – по шкале отношений.

При использовании шкалы отношений (и только в этом случае!) измерение какой-либо величины сводится к экспериментальному определению отношения этой величины к другой подобной, принятой за единицу. Измеряя длину прыжка, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в частном случае); взвешивая штангу, определяем отношение ее массы к массе другого тела – единичной гири «килограмма» и т.п.

Если ограничиться только применением шкал отношений, то можно дать другое (более узкое, частное) определение измерению: измерить какую-либо величину – значит найти опытным путем ее отношение к соответствующей единице измерения.

 

– Конец работы –

Эта тема принадлежит разделу:

Практикум по дисциплине спортивная метрология

Кафедра биомеханики.. ю о волков л л солтанович с л рукавицына практикум по дисциплине спортивная метрология..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Шкалы измерений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Спортивная метрология
    Минск 2011   Авторы: Ю.О. Волков Л.Л. Солтанович С.Л. Рукавицына, кан

Игровая ситуация
В пособии предложена игровая ситуация, позволяющая студентам ощутить атмосферу работы в коллективе СДЮСШ. Каждый студент имитирует работу тренера по подготовке группы из 10 спортсменов, сп

Решение задачи
Для проверки эффективности указанной методики «тренер» должен проследить, как в ходе тренировок по проверяемой методике изменяются показатели, характеризующие скоростные качества у спортсменов. Дан

Студента 137 гр. Иванова И
о проверке эффективности методики тренировки с применением методов математической статистики   Разделы отчета оформляются в соответствии с образцами, пр

Единицы измерений
Чтобы результаты разных измерений можно было сравнить друг с другом, их выражают в одних и тех же единицах. Совокупность установленных определённым образом единиц для всех физических величин называ

Точность измерений
Никакое измерение не может быть выполнено абсолютно точно. Результат измерения неизбежно содержит погрешность, величина которой тем меньше, чем точнее метод измерения и измерительный прибор. Наприм

Порядок работы на I этапе
1. Ознакомиться с содержанием I этапа деловой игры. 2. Ознакомиться с теоретическими сведениями. 3. Ознакомиться с образцом оформления отчета о результатах работы на I этапе игры.

Ситуация и организация игры на II этапе
На I этапе данные о скоростных качествах, собранные в ходе тестирования «спортсменов» (эти данные составили выборки, обозначенные индексами А, Б и В), были упорядочены и сведены в статистическую та

Предмет математической статистики
Предметом математической статистики является анализ результатов массовых, повторяющихся измерений. Результаты таких измерений всегда более или менее отличаются друг от друга. Даже если измеряется т

Составление рядов распределения и их графические представления
В процессе наблюдения или измерения какого-либо показателя получают ряд чисел. Численные результаты подразделяют на дискретные и непрерывные. К дискретным относят число подтягиваний н

Меры центральной тенденции
Центральную тенденцию выборки позволяют оценить такие статистические характеристики, как среднее арифметическое значение, мода, медиана. Наиболее просто получаемой мерой цент

Выбор меры центральной тенденции
Вычисление моды, медианы или среднего – чисто техническая процедура. Однако выбор из этих трех мер и их интерпретация зачастую требуют определенного размышления. В процессе выбора следует установит

Характеристики вариации
К характеристикам вариации, или колеблемости, результатов измерений относят размах варьирования, дисперсию, среднее квадратическое отклонение, коэффициент вариации, стандартную ошибку

Репрезентативность выборочных показателей
Чтобы получить исчерпывающую информацию о состоянии той или иной статистической совокупности, нужно учесть весь ее состав без исключения. Однако в силу разных обстоятельств не всегда есть возможнос

Ошибки репрезентативности
Возможные отклонения выборочных показателей от их параметров в генеральной совокупности называются ошибками репрезентативности. Эти ошибки неизбежны и возникают потому, что исследов

Стандартная ошибка среднего арифметического
Чтобы судить о том, насколько точно проведенные измерения отражают состав генеральной совокупности, необходимо вычислить стандартную ошибку средней арифметической выборочной совокупности.

Показатель точности оценки параметров
Сама по себе абсолютная величина выборочной ошибки как показатель именованный мало пригодна для случаев сравнительной оценки точности, с какой определены средние результаты наблюдений по отношению

Порядок работы на II этапе
1. Ознакомиться с ситуацией и организацией игры на II этапе. 2. Ознакомиться с теоретическими сведениями. 3. Ознакомиться с образцом отчета о работе на II этапе. 4. Рассч

Графическое представление
Запишем ранжированный ряд: 131, 144, 151, 153, 154, 168, 168, 182, 189, 208. Т.к. n = 10, по таблице 2.2 находим число интервалов: k = 4. Шаг интервала:

Графическое представление
Запишем ранжированный ряд: 123, 141, 142, 150, 154, 162, 163, 167, 173, 190. Шаг интервала:

Графическое представление
Запишем ранжированный ряд: 50, 62, 66, 70, 70, 71, 74, 74, 75, 93. Шаг интервала:

Проверка расчета статистических характеристик на ЭВМ
Для ускорения процесса проверки составим таблицу. В столбцы «расч.» выпишем рассчитанные значения статистических характеристик. В столбцы «пров.» будем записывать результаты, полученные на компьюте

Оценка надежности теста для контроля за развитием скоростных качеств
Цели: 1. Ознакомиться с основами теории корреляции. 2. Ознакомиться с основами теории проверки статистических гипотез. 3. Ознакомиться с основами теории

Функциональная и статистическая взаимосвязи
В спортивных исследованиях между изучаемыми показателями часто обнаруживается взаимосвязь. Вид ее бывает различным. Например, определение ускорения по известным данным скорости, второй закон Ньютон

Корреляционное поле
Анализ взаимосвязи начинается с графического представления результатов измерений в прямоугольной системе координат. Предположим, что у шести испытуемых зарегистрирован такой показатель, как число п

Оценка тесноты взаимосвязи
Для оценки тесноты линейной взаимосвязи в корреляционном анализе используется значение (абсолютная величина) специального показателя – коэффициента корреляции. Абсолютное значение (модуль чи

Направленность взаимосвязи
Диаграмма рассеяния на рисунке 3.4, кроме сильной статистической взаимосвязи, имеет еще одну особенность – прямо пропорциональную тенденцию зависимости. Это значит, что улучшение, например,

Методы вычисления коэффициентов взаимосвязи
Величина коэффициента взаимосвязи рассчитывается с учетом шкалы, использованной для измерений. Для оценки взаимосвязи, когда измерения производят в шкале отношений или интервалов и форма в

Проверка нулевых гипотез
Для проверки выдвинутых нулевых гипотез используют специальные статистические критерии, разработанные математиками (Колмогоровым, Смирновым, Стьюдентом, Фишером, Пирсоном и др.). С

Ошибочные решения при проверке гипотез
При проверке статистической гипотезы решение экспериментатора никогда не принимается с уверенностью, т.е. всегда существует некоторый риск принять неправильное решение. Исключить на 100 % этот риск

Основные этапы проверки статистических гипотез
1. Исходя из задач исследования, формулируются статистические гипотезы. 2. Выбирается уровень значимости, на котором будут проверяться гипотезы. 3. На основе выборки, полученной и

Понятие о надежности тестов
Один и тот же тест, применяемый к одним и тем же испытуемым, должен давать в одинаковых условиях совпадающие результаты (если только не изменились сами испытуемые). Однако при самой строгой стандар

Стабильность теста
Под стабильностью теста понимают воспроизводимость результатов при его повторении через определенное время в одинаковых условиях. Повторное тестирование обычно называют ретестом. Схем

Согласованность теста
Согласованность характеризуется независимостью результатов тестирования от личных качеств лица, проводящего или оценивающего тест. Согласованность определяется по степени совпадения результа

Эквивалентность тестов
Нередко тест выбирают из определенного числа однотипных тестов. Например, броски в баскетбольную корзину можно выполнять с разных точек; спринтерский бег может проводиться на дистанции, скажем, 50,

Пути повышения надежности теста
Надежность тестов может быть повышена до определенной степени путем: а) более строгой стандартизации тестирования; б) увеличения числа попыток; в) увеличения числа оценщи

Порядок работы на III этапе
Отчет о работе на III этапе игры (образец) Тема: Оценка надежности теста для контроля за развитием скоростных качеств. Це

Корреляционное поле
Представим взаимосвязь результатов измерения теста А и ретеста Б в виде графика, для чего в прямоугольной системе координат построим корреляционное поле. Результаты теста А будем откладывать по оси

Оценка информативности теста
Цели: 1. Ознакомиться с методами оценки информативности тестов. 2. Приобрести навыки определения коэффициента информативности теста.  

Эмпирическая информативность (существует измеряемый критерий)
Идея определения эмпирической информативности состоит в том, что результаты теста сравнивают с некоторым критерием. Для этого рассчитывают коэффициент корреляции между критерием и тестом (и такой к

Эмпирическая информативность в практической работе
При практическом использовании показателей эмпирической информативности следует иметь в виду, что они справедливы лишь по отношению к тем испытуемым и условиям, для которых они рассчитаны.

Содержательная (логическая) информативность
Информативность теста не всегда может быть установлена с помощью эксперимента и статистической обработки его результатов. Например, требуется подготовить билеты для экзамена или темы дипломных рабо

Ситуация и организация игры на IV этапе
Добротным может быть признан тест, удовлетворяющий требованиям не только надежности, но и информативности. Поэтому на данном этапе «тренеру» необходимо проделать работу по оценке информативности те

Корреляционное поле
Представим взаимосвязь результатов измерения теста А и теста-критерия В в виде графика, для чего в прямоугольной системе координат построим корреляционное поле. Результаты теста А будем откладывать

Ситуация и организация игры на V этапе
На предыдущих этапах игры «тренеры» оценили надежность и информативность теста, выбранного ими для контроля развития у спортсменов скоростных качеств. В случае, если надежность и информативность те

Выбор критерия для оценки эффективности
Оценка эффективности методики тренировки, используемой спортсменами для развития скоростных качеств, сводится к сравнению средних арифметических значений двух попарно зависимых выборок: выборки, об

Нормальный закон распределения результатов измерений
Многие ряды распределения, встречающиеся в статистических наблюдениях, можно охарактеризовать формулами разных математических функций. Функции или законы распределения случайных величин бывают: бин

Доверительный интервал. Доверительная вероятность
Под термином «оценка» понимаются как сами значения параметров генеральной совокупности, полученные по выборке, так и правило, по которому они получены. При формировании интервальных оценок о

Построение доверительного интервала для оценки среднего значения генеральной совокупности
Чтобы найти границы доверительного интервала для среднего значения генеральной совокупности необходимо выполнить следующие действия: 1) по полученной выборке объема n вычислить сред

Порядок работы на V этапе
1. Проверить на нормальность распределения малую (n < 30) выборку, составленную из разностей парных значений результатов измерений исходного показателя скоростных качеств у «спортсменов» (эти ре

Проверка эффективности применявшейся методики тренировки
Для проверки эффективности методики тренировки выдвигаем гипотезы: – нулевую – H0: об отсутствии различия между средним исходным показателем скоростных к

Расчет и построение доверительного интервала для генеральной средней арифметической
Так как распределение выборки d, составленной из разностей парных значений, согласуется с нормальным законом распределения, а генеральная дисперсия di неизвестна, точные

Проверка эффективности применявшейся методики тренировки
Для проверки эффективности методики тренировки выдвигаем гипотезы: – нулевую – H0: об отсутствии различия между средним исходным показателем скоростных к

Расчет и построение доверительного интервала для генеральной средней арифметической
Так как распределение выборки d, составленной из разностей парных значений, отличается от нормального закона распределения, а генеральная дисперсия di неизвестна, прибли

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги