Создание модели атома: квантовая теория и спектроскопия

Создание модели атома: квантовая теория и спектроскопия. Датский физик Нильс Бор (1885 – 1962), сделавший следующий важный шаг на пути создания модели атома, опирался при этом на две другие области исследований.

Первая из них – квантовая теория, вторая – спектроскопия. Впервые идея квантования была высказана Максом Планком (1858 – 1947) в 1900 г. для объяснения механизма излучения тепла (и света) нагретым телом.

Планк показал, что энергия может излучаться и поглощаться только определенными порциями, или квантами. Основы спектроскопии были заложены еще Исааком Ньютоном (1642 – 1727): он пропустил луч солнечного света через стеклянную призму, разложив его на совокупность цветов видимого спектра. В 1814 г. Йозеф Фраунгофер (1787 – 1826) открыл, что спектр солнечного света содержит несколько темных линий, соответствующих, как было установлено позже, линиям в спектре испускания водорода, в котором произошел электрический разряд.

Бор доказал, что движущийся электрон в атоме водорода может существовать только на фиксированных орбитах, а спектральные линии водорода соответствуют поглощению (темные линии) или излучению (светлые линии) кванта энергии; эти процессы происходят, когда электрон “перепрыгивает” с одной фиксированной орбиты на другую. Модель Бора, позднее усовершенствованная Арнольдом Зоммерфельдом (1868 – 1951), позволила добиться успехов в объяснении спектра водорода. Согласно современной квантовой теории, фиксированные орбиты Бора не следует представлять слишком буквально – в действительности электрон в атоме с некоторой вероятностью может быть обнаружен в любом месте, а не только вблизи орбиты.

Это – следствие квантовой механики, которая была в основном сформулирована Вернером Гейзенбергом (1901 – 1976) и Эрвином Шредингером (1887 – 1961). В ее основе лежит так называемый принцип неопределенности Гейзенберга.

В результате орбиты Бора оказались не точными траекториями электрона, а местами его наиболее вероятного обнаружения в атоме. Согласно идее корпускулярно-волнового дуализма, впервые высказанной Луи де Бройлем, субатомные частицы можно описывать так же, как и свет, в том смысле, что в одних случаях для этого целесообразно пользоваться понятием “частица”, а в других – “волна”. Так, “пучок” электронов ведет себя как совокупность частиц в катодных лучах, но как совокупность волн в электронном микроскопе.

Однако, с точки зрения химии, представление об атоме, как о мельчайшей частичке материи, принимающей участие в химических реакциях, по-прежнему остается наиболее удобным. 2.