рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общие положения

Общие положения - раздел Изобретательство, При разработке перспективных и оптимизации существующих информационно-измерительных систем   В Работах Отечественных И Зарубежных Ученых Неоднократно Подн...

 

В работах отечественных и зарубежных ученых неоднократно поднималась проблема разработки единого системного подхода к решению задачи оптимального оценивания. Были сформулированы условия правильности (регулярности) математической постановки задач этого класса, которые могли бы гарантировать получение единственного решения с заданными оптимальными свойствами.

В рамках системного подхода можно получить комплексное решение вопросов выбора адекватных математических моделей и функционирования систем обработки измерительной информации; рационального критерия качества оценивания; оптимальной стратегии измерений и т.п. При декомпозиции исходной задачи оценивания на составные части (элементы) основное внимание уделяется их структурным взаимосвязям, влияющим на характер и качество ее решения.

В настоящее время для проверки условий регулярности постановки задачи оценивания в основном используется математический аппарат, базирующийся на теореме о неявных функциях и предполагающий вычисление рангов соответствующих функциональных матриц для проверки взаимной однозначности отображений. Однако исследование сложной задачи трудно осуществить в рамках какого-то одного раздела математики, одной теории или метода. Постоянное ужесточение требований к качеству и срокам проектирования систем обработки измерительной информации являются основной причиной активизации поиска адекватного математического аппарата, соответствующего основным принципам системного подхода.

В данной главе, опираясь на [2, 3, 16, 25, 27, 28, 30], в сжатой форме изложены основные принципы системного подхода к решению задач оценивания. Основное внимание уделено условиям правильности (регулярности) математической постановки задач этого класса, которые могли бы гарантировать получение единственного решения с заданными оптимальными свойствами. На базе известной из математического анализа теоремы о неявных функциях дается анализ структурных свойств задачи оценивания: адекватности используемых математических моделей, наблюдаемости измеряемых параметров, состоятельности критерия качества.

Следуя [16], введем понятие регулярности (правильности) математической постановки задачи оценивания. Задачу будем считать регулярной, если в рамках принятой математической постановки существует единственное решение этой задачи с требуемыми предельными свойствами по объему выборки измерений.

Рассмотрим математическую постановку задачи оценивания в рамках системного подхода, т.е. с учетом структурных взаимосвязей, существующих между элементами задачи.

– Конец работы –

Эта тема принадлежит разделу:

При разработке перспективных и оптимизации существующих информационно-измерительных систем

При разработке перспективных и оптимизации существующих... Среди указанных методов наиболее широкое распространение на практике получил МНК и его различные модификации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общие положения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные элементы задачи. Условия регулярности
  Пусть известно, что оцениваемый процесс (вектор состояния) на отрезке времени [t0, T] характеризуется вектором

Адекватность моделей задачи оценивания
  Условие адекватности определяет некоторое отношение на множестве математических моделей. Введем в рассмотрение метрическое пространство

Состоятельность критерия качества
  Полагая и учитывая, что оценка

Интерполяция функций с финитным спектром
  В данном разделе в качестве моделей полезных сигналов используются функции с финитным спектром (ФФС) [29], для которых в соответствии с известной теоремой отсчетов справедливо предс

Аппроксимация функций с финитным спектром
  Рассмотрим теперь возможность аппроксимации с заданной точностью ε > 0 на отрезке [0, T] функции

Аппроксимация функций с нефинитным спектром
  Прежде всего, рассмотрим задачу приближения произвольных функций с конечной полной энергией (т.е. интегрируемых в квадрате на всей оси) при помощи ФФС и конечной полной энергией.

Дифференцирование функций с финитным спектром
  Рассмотрим новый метод N-кратного дифференцирования, базирующийся на применении ряда Котельникова, который по сравнению с известными методами в большой степени ориентирован н

Погрешности дифференцирования функций с финитным спектром
  Для оценки погрешностей дифференцирования введем ограничение на поведение функции при

Дифференцирование функций с нефинитным спектром
  Рассмотрим возможность применения изложенного в предыдущих подразделах математического аппарата для N-кратного дифференцирова­ния функций с нефинитным спектром. Пуст

Дифференцирование финитных функций
  Обратимся теперь к наиболее распространенному в практике случаю, когда дифференцируемые функции являются финитными на временной оси, и, следовательно, не принадлежат классу ФФС.

Математическая постановка задачи
  Пусть функция представима в виде  

Решение задачи
  С учетом (3.1), (3.5), и (3.7), замечая, что , имеем

Оценка методической погрешности
  Дадим теперь оценку методической погрешности оптимального оценивания, обусловленной неадекватностью принятой математической модели (3.1). Пусть истинная функция

Сравнительный анализ разработанного метода с методом наименьших квадратов
  Рассмотрим случай, когда и , следовательно,

Результаты вычислительного эксперимента
  Рассмотрим задачу оптимального оценивания при наличии сингулярной и флуктуационной помех для следующих исходных данных:

Перечень сокращений
В настоящей пояснительной записке применяются следующие обозначения и сокращения: - ФФС – функция с финитным спектром; - МНК

Библиографический список
  1. Березин И.С., Жидков Н.П. Методы вычислений. Т.1.M.: Наука, 1966. 2. Брандин В.Н., Васильев А.А., Худяков С.Т. Основы экспериментальной космической баллистики. М-:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги