рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Результаты вычислительного эксперимента

Результаты вычислительного эксперимента - раздел Изобретательство, При разработке перспективных и оптимизации существующих информационно-измерительных систем   Рассмотрим Задачу Оптимального Оценивания При Наличии Сингуля...

 

Рассмотрим задачу оптимального оценивания при наличии сингулярной и флуктуационной помех для следующих исходных данных:

, , , , , и , , , то есть , , , .

Принимая , , , с учетом (1.2) в узлах сетки имеем

, . Поскольку в данном случае рассматривалась задача оценивания сглаженного значения функции и ее первой производной в средней точке отрезка .

При моделировании вектор случайных погрешностей полагался распределенным по нормальному закону с нулевым математическим ожиданием и корреляционной матрицей , где - заданная положительная константа. Кроме того, полагалось, что на отрезке выполнялось тождественное равенство , то есть . Вычисления проводились с точностью .

Раскроем далее основные вектора и матрицы (здесь и далее числа округлены до третьего знака после запятой) с учетом специфики рассматриваемого примера:

, ,

, ,

,

.

Исходя из условий практической реализуемости развитого метода, сформулированных во втором параграфе, в данном примере система базисных функций выбрана линейно независимой. При этом ранг расширенной матрицы равен 6, что обеспечивает совместность условий несмещенности и инвариантности.

Искомая матрица выглядит так

.

Для принятых исходных данных имеем следующие значения дисперсий ошибок оценивания: (для ).

Рассмотрим теперь более общий случай, когда для заданного отрезка число - произвольное число натурального ряда, то есть . Примем также , .

Для моделирования на ЭВМ случайных погрешностей

использовался датчик случайных чисел, генерирующий квазислучайную последовательность с нормальным распределением, характеризующимся нулевым математическим ожиданием и соответствующей дисперсией .

Результаты моделирования отображены в виде таблицы, показывающей зависимость результирующих оптимальных оценок и , а также евклидовой нормы вектора сингулярной ошибки от числа для и соответственно. При этом указанные оценки формировались путем усреднения единичных оценок величин и , полученных на основе пятидесяти реализаций, генерируемых датчиком случайных чисел.

 

Таблица 3.1

15.157 1.226 0.684 0.989 0.208
20.686 1.124 0.314 0.996 0.189
27.717 1.032 0.263 0.998 0.121
33.321 1.021 0.097 0.999 0.016
38.114 1.007 0.028 1.000 0.009
42.371 1.000 0.007 1.000

 

Анализ результатов моделирования показывает инвариантность получаемых оценок к сингулярным погрешностям (в условиях отсутствия случайных погрешностей результаты расчетов совпадают с точными значениями ) и высокую степень устойчивости к случайным возмущениям.

Развитый метод является основой для решения задач оптимального оценивания значений операторов - кратного дифференцирования в классе функций с финитным спектром. Метод позволяет существенно повысить устойчивость вычислительных процедур как к случайным, так и к сингулярным ошибкам заданного класса.

Основное достоинство предложенного подхода состоит в том, что, в отличие от абсолютного большинства известных методов [2, 3, 23-25, 28, 30], в данном случае не требуется увеличения размерности решаемой задачи при построении оптимальных несмещенных оценок, инвариантных к сингулярным погрешностям.

Достоинством метода также является его универсальность, поскольку решение получено в конечно - аналитическом виде, допускающем компактную векторно-матричную форму записи, что весьма удобно при практической реализации на базе цифровых вычислительных машин различных классов.

Поскольку возможность применения полученных в работе результатов тесно связана с понятием «наблюдаемости» (разрешимости) поставленной задачи, то в практических случаях выбор подпространства сингулярных ошибок можно производить, опираясь на результаты работ [2, 3, 16], в которых дано всестороннее теоретическое и прикладное обоснование понятия «наблюдаемости».


– Конец работы –

Эта тема принадлежит разделу:

При разработке перспективных и оптимизации существующих информационно-измерительных систем

При разработке перспективных и оптимизации существующих... Среди указанных методов наиболее широкое распространение на практике получил МНК и его различные модификации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Результаты вычислительного эксперимента

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие положения
  В работах отечественных и зарубежных ученых неоднократно поднималась проблема разработки единого системного подхода к решению задачи оптимального оценивания. Были сформулированы усл

Основные элементы задачи. Условия регулярности
  Пусть известно, что оцениваемый процесс (вектор состояния) на отрезке времени [t0, T] характеризуется вектором

Адекватность моделей задачи оценивания
  Условие адекватности определяет некоторое отношение на множестве математических моделей. Введем в рассмотрение метрическое пространство

Состоятельность критерия качества
  Полагая и учитывая, что оценка

Интерполяция функций с финитным спектром
  В данном разделе в качестве моделей полезных сигналов используются функции с финитным спектром (ФФС) [29], для которых в соответствии с известной теоремой отсчетов справедливо предс

Аппроксимация функций с финитным спектром
  Рассмотрим теперь возможность аппроксимации с заданной точностью ε > 0 на отрезке [0, T] функции

Аппроксимация функций с нефинитным спектром
  Прежде всего, рассмотрим задачу приближения произвольных функций с конечной полной энергией (т.е. интегрируемых в квадрате на всей оси) при помощи ФФС и конечной полной энергией.

Дифференцирование функций с финитным спектром
  Рассмотрим новый метод N-кратного дифференцирования, базирующийся на применении ряда Котельникова, который по сравнению с известными методами в большой степени ориентирован н

Погрешности дифференцирования функций с финитным спектром
  Для оценки погрешностей дифференцирования введем ограничение на поведение функции при

Дифференцирование функций с нефинитным спектром
  Рассмотрим возможность применения изложенного в предыдущих подразделах математического аппарата для N-кратного дифференцирова­ния функций с нефинитным спектром. Пуст

Дифференцирование финитных функций
  Обратимся теперь к наиболее распространенному в практике случаю, когда дифференцируемые функции являются финитными на временной оси, и, следовательно, не принадлежат классу ФФС.

Математическая постановка задачи
  Пусть функция представима в виде  

Решение задачи
  С учетом (3.1), (3.5), и (3.7), замечая, что , имеем

Оценка методической погрешности
  Дадим теперь оценку методической погрешности оптимального оценивания, обусловленной неадекватностью принятой математической модели (3.1). Пусть истинная функция

Сравнительный анализ разработанного метода с методом наименьших квадратов
  Рассмотрим случай, когда и , следовательно,

Перечень сокращений
В настоящей пояснительной записке применяются следующие обозначения и сокращения: - ФФС – функция с финитным спектром; - МНК

Библиографический список
  1. Березин И.С., Жидков Н.П. Методы вычислений. Т.1.M.: Наука, 1966. 2. Брандин В.Н., Васильев А.А., Худяков С.Т. Основы экспериментальной космической баллистики. М-:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги