рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ТЕХНИКА КАК ПРЕДМЕТ ИССЛЕДОВАНИЯ ЕСТЕСТВОЗНАНИЯ

ТЕХНИКА КАК ПРЕДМЕТ ИССЛЕДОВАНИЯ ЕСТЕСТВОЗНАНИЯ - раздел Изобретательство, ФИЛОСОФИЯ ТЕХНИКИ И МЕТОДОЛОГИЯ ТЕХНИЧЕСКИХ НАУК Между Естественнонаучными Экспериментами И Техническими Процесса­ми Нет Больш...

Между естественнонаучными экспериментами и техническими процесса­ми нет большой разницы, поскольку первые являются артефактами, а вто­рые - видоизмененными природными процессами. Осуществление экс­перимента - это деятельность по производству технических эффектов, которая отчасти может быть квалифицирована как инженерная, т.е. как попытка создать искусственные процессы и состояния с целью получения новых научных знаний о природе или подтверждения научных законов, а не исследования закономерностей функционирования и создания самих технических устройств. Поэтому, указывая на инженерный характер физи­ческого эксперимента, не следует упускать из виду тот факт, что и совре­менная инженерная деятельность была в значительной степени видоизме­нена под влиянием развитого в науке Нового времени мысленного эксперимента. Естественно-научный эксперимент - это не столько кон­струирование реальной экспериментальной установки, сколько прежде всего идеализированный эксперимент, оперирование с идеальными объ­ектами и схемами, результатом которых могут стать новые контролируе­мые лабораторные ситуации, необходимые для наблюдения естественных явлений, слабо различимых в природе. Одна из задач физики заключается в том, чтобы изолировать теоретически предсказанное явление, получить его в чистом виде в технически подготовленном эксперименте, поэтому физические науки открыты для технического применения, а технические устройства могут быть использованы для экспериментов в физике.

Многие первые научные теории были, по существу, теориями научных инструментов, которые ничем не отличаются от технических устройств. Физическая оптика - это теория микроскопа и телескопа, пневматика - теория насоса и барометра, а термодинамика - теория паровой машины и двигателя. Аналогичным образом и для решения инженерных задач сред­ствами математики технические системы необходимо объективировать - рассмотреть в виде естественных объектов, независимо от человеческой деятельности, т.е. переформулировать инженерную задачу в естественно­научную проблему. Галилей, анализируя в «Механике» простейшие техни­ческие системы, например винт, рассматривает в первую очередь их при­роду. По его оценке, из всех созданных человеком орудий винт занимает первое место по своей полезности, поэтому ученый пытается дать ясное объяснение его происхождения и природы, для чего переходит к рассмот­рению естественных движений тяжелых тел, на некоторое время не принимая в расчет того, что речь идет, в сущности, об искусственном объекте. Экстраполируя результаты наблюдения за Поведением жидких тел на твер­дые тела, он утверждает, что основное естественное свойство движения тя­желых тел состоит в том, что, будучи свободными, они стремятся двигать­ся по направлению к центру, если только случайные и внешние помехи не препятствуют этому. Именно эти помехи и могут быть устранены искусст­венным путем, например полированием. Таким образом, на тщательно вы­ровненной поверхности шар, изготовленный из подходящего материала, будет оставаться между покоем и движением, но малейшей силы достаточ­но, чтобы привести его в движение. Переходя от описания функциониро­вания технической системы к естественному движению природного объ­екта, Галилей конструирует идеализированный объект физической теории, а на его основе — экспериментальную ситуацию, созданную искусствен­ным путем, которая позволяет ему вывести естественно-научную законо­мерность: тяжелые тела, если удалить все внешние и случайные помехи, можно перемещать самой незначительной силой. Однако, чтобы заставить тяжелое тело двигаться по наклонной плоскости вверх, потребуются боль­шие усилия, поскольку в этом случае движение осуществляется в противо­положном направлении. Наконец, Галилей возвращается к винту, утверж­дая, что тот представляет собой треугольник, обернутый вокруг цилиндра, поэтому винт с более частыми спиралями обращается плоскостью менее наклонной. В заключение ученый формулирует обобщение, важное для создания любых механических орудий: насколько больше их выигрыш в силе, настолько же они проигрывают во времени и в быстроте. Таким обра­зом, ученый-естествоиспытатель обращается с естественными объектами как инженер-теоретик, перестраивающий их с целью обнаружения обще­го принципа действия, а с искусственными процессами - как ученый-практик, обнаруживающий в них всеобщий закон.

Задавшись вопросом, почему в проливах течение быстрее, чем на от­крытых местах, Галилей начинает с наблюдения за функционированием инженерных сооружений — каналов, преследуя при этом не инженер­ные, а естественно-научные цели. Он стремится понять причину силь­ных течений, возникающих в узком проливе, а в конечном счете, и до­казать вращение Земли. При этом как ученый-естествоиспытатель он переносит полученные при наблюдении искусственных сооружений вы­воды на природные процессы, но не просто разрабатывает более строгие научные понятия, а конструирует мысленный эксперимент как проект реального эксперимента, т.е. особое идеализированное представление природных объектов, которое затем может быть практически реализова­но с помощью устранения побочных влияний и помех техническими средствами. Таким образом, в экспериментальном естествознании уче­ный должен не только построить логически удовлетворительную теоре­тическую схему, объясняющую и предсказывающую ход развития того или иного природного явления и процесса, но и сконструировать прак­тическую экспериментальную ситуацию, воспроизводящую это явление искусственно в наиболее чистом виде, отвлекаясь от второстепенных черт, и проверяющую достоверность выбранной теоретической схемы.

Работы Галилея и его последователей создали почву для формирова­ния образцов инженерного мышления и деятельности, уже не только в сфере теории, но и на практике. X. Гюйгенс, например, на основе точно­го расчета и сознательного применения научного знания соотнес мате­матическую схему (циклоиду — геометрическую кривую, по которой движется маятник в его часах), описание физического процесса качания маятника и конструкцию часов. Исходя из технического требования, предъявляемого к функционированию маятника, и знаний механики, он определил конструкцию часов, которая может удовлетворять данно­му требованию. Сформулированный и продемонстрированный Галиле­ем и Гюйгенсом путь использования технических знаний в естествозна­нии и применения естественно-научных знаний в технике, является краеугольным камнем современной естественной науки и одновремен­но условием возникновения технических наук.

Наиболее рельефно это выразилось в творчестве Г. Герца, эксперимен­ты которого по распространению электромагнитных колебаний не только послужили блестящим подтверждением теории Фарадея—Максвелла, но и положили начало развитию новой технической науки и сферы инженер­ной практики — радиотехники. Работы Галилея и Герца содержат много общего, несмотря на различные предметы исследования, поскольку зало­жили методологические основы теоретического осмысления феноменов техники. Однако если Галилей положил начало естественно-научной тео­рии, ориентированной на технически спланированный эксперимент, то Герц заложил основы технической теории, выросшей как приложение ес­тественно-научной теории к вновь создаваемой области техники. Исто­рия становления и развития естествознания и техники связана с постоян­ным обменом опытом между этими двумя сферами и движением то от техники к естествознанию, то, наоборот, от естествознания к технике.

Таким образом, современное естественно-научное исследование с самого своего возникновения опосредовано техникой для моделирова­ния природных процессов в доступном для наблюдения виде, абстраги­руясь от побочных влияний, и часто трудно определить, что исследует ученый: естественные или искусственные процессы. Точнее сказать, ученый-естествоиспытатель исследует естественные процессы в идеали­зированных искусственно созданных условиях, имея дело с технической системой, замещающей природный объект, и переносит полученные в результате экспериментирования с ней знания на этот объект. Как по­бочные для него, но очень важные для технического развития общества следствия, появляются технические приложения, полученные в ходе разработки нового экспериментального оборудования, которые в каче­стве образцов, в конечном счете, попадают в сферу техники.

В экспериментальном естествознании и в инженерной деятельности устанавливается взаимосвязь между миром природным и миром искус­ственным, поэтому понятия «естественного» и «искусственного», разви­тые еще в античной философии, играют важную роль для разграничения естествознания и техники. Первоначально естественное как принцип развития или внутренняя сила, обусловливающая именно данный, а не иной ход природного процесса, рассматривалось античными натурфи­лософами как антитеза сверхъестественному. Платон различает сущест­вующее согласно природе и по закону, т.е. искусное, то, что приобрета­ется старанием, упражнением, обучением, что противно природе. Для него искусство - технэ - божественное или человеческое стоит выше природы. По Аристотелю, естественное - это то, причина чего заклю­чена в самой вещи, что происходит по определенному закону либо все­гда, либо по большей части. Естественное противопоставляется у него также насильственному: естественное движение - это движение по природе к своему естественному месту. Кроме того, он различает возни­кающее от природы и образованное искусством.

Со становлением экспериментального естествознания проблема соот­ношения естественного и искусственного переосмысливается. Для Декар­та всякое различие между естественным и искусственным с необходимос­тью исчезает, поскольку мир, природа трактуется им как машина, поэтому все искусственные предметы вместе с тем являются естественными: часам не менее естественно показывать время с помощью колесиков, из кото­рых они составлены, чем дереву, выросшему из семян, приносить плоды, Такое понимание естественного и искусственного прямо противополож­но аристотелевскому представлению, согласно которому природное про­тивопоставлялось созданному человеком, а физика — механике как ис­кусству, а не науке. По Декарту же, механика является частью физики, изучающей трубы и пружины, вызывающие действия природных вещей. Галилей рассматривает эти понятия в нескольких контекстах: естествен­ный ход вещей противопоставляется им сверхъестественному — чуду, а ес­тественное как необходимое является для него антитезой насильственно­му и случайному, наконец, природное, врожденное, самопроизвольное отличается им от человеческого, рукотворного, изобретенного. Но глав­ное его достижение заключается в соотнесении этих двух понятий. В от­личие от Аристотеля, Галилей рассматривает естественное движение в ис­кусственных условиях. Говоря, например, о плавающих телах, он утверждает, что понять их причину легко, поскольку в любом искусствен­но приготовленном сосуде можно наблюдать эти явления естественно происходящими. В то же время он говорит и о природе механических ору­дий, рассматривая их естественный компонент, критикуя, например, механиков, стремящихся применить машины к действиям, невозможным по самой еврей природе. Именно таким перенесением искусственного в естественное и естественного в искусственное были заданы идеалы и нор­мы экспериментального естествознания и инженерной деятельности.

Двойственная ориентация инженера на научные исследования при­родных явлений и на воспроизведение замысла искусственным путем в целенаправленной деятельности заставляет его взглянуть на свой про­дукт иначе, чем это делает ремесленник, для которого такой продукт представляет собой изделие рук человеческих, или ученый-естествоис­пытатель, видящий в нем прежде всего природный объект. Для инжене­ра всякое создаваемое им техническое устройство выступает как «естест­венно-искусственная» система, представляя собой, с одной стороны, подчиняющееся естественным законам явление природы, а с другой — орудие, механизм, машину, сооружение, которые необходимо искусст­венно создать. Непонимание роли естественных законов для решения технических задач характерно лишь для доинженерного технического мышления. По меткому замечанию Галилея, думающие обмануть при­роду неразумные инженеры действуют как ремесленники. Если для тех­нического мышления действительно характерна «искусственная» пози­ция, то для инженерного — «естественно-искусственная».

В широком понимании каждый вид человеческой деятельности име­ет свою технику, в узком же — под техникой имеется в виду только дея­тельность человека, работающего в области техники. Техника, по опре­делению Энгельмейера, — это искусство вызывать намеченные полезные явления природы, пользуясь известными свойствами природ­ных тел. Современная техника принадлежит к искусствам, т.е. к объек­тивирующей деятельности, и в то же время руководствуется естествозна­нием, поэтому важно отличать техника от ремесленника, который создает свои произведения исключительно путем усвоения раз навсегда выработанной рутины. Но еще более важно провести различие между техником и инженером: инженер осуществляет творческую и направля­ющую деятельность, на долю техника выпадает исполнение. Сочетание в инженерной деятельности естественной и искусственной ориентации обусловливает необходимость для инженера опираться, с одной сторо­ны, на науку, в которой он черпает знания о естественных процессах, а с другой - на существующую технику, откуда он заимствует знания о ма­териалах, конструкциях, их технических свойствах, способах изготовле­ния. Совмещая эти два рода знания, он находит те точки природы, в ко­торых природные процессы действуют так, как это необходимо для функционирования создаваемой технической системы. Задача инжене­ра - создать с помощью искусственных средств материальные условия для запуска непрерывной цепи процессов природы. Именно выяснению этой природной связи служат полученные учеными естественно-научные знания о характере и особенностях протекания различных природ­ных процессов.

Итак, суть научного метода в технике состоит в том, чтобы поставить природные тела в такие обстоятельства, когда их действие, происходящее в соответствии с законами природы, будет одновременно соответствовать на­шим целям. Когда эту задачу начали выполнять сознательно, возникла но­вейшая научная техника. Переход к научной технике был, однако, не одно­направленной трансформацией техники наукой, а их взаимосвязанной модификацией, поскольку не только наука повлияла на становление норм современного инженерного мышления, но и инженерная деятельность оказала заметное влияние на формирование нового идеала научности. Под влиянием инженерной деятельности, например, меняется представление о научном опыте и его содержании, куда входит уже не только простое на­блюдение, но и инженерно подготавливаемый эксперимент. Галилей упо­требляет понятие «опыт» как в смысле ежедневного опыта, обычного наблюдения за ходом природных явлений и за функционированием искус­ственных сооружений, так и в плане инженерного опыта, или эксперимен­та, который он разделяет на мысленный (на чертеже или без чертежа, тех­нически осуществимый или неосуществимый) и реальный. Реальный эксперимент заключается в разработке и создании специального экспери­ментального оборудования, проведении на нем планомерных опытов и на­блюдений за его функционированием. В этом и состоит подлинное научное объяснение природных явлений с помощью искусственного воспроизведе­ния их внешнего действия. При этом опыты должны производиться не слу­чайно, а, по словам Декарта, тщательно готовиться проницательными людьми, способными правильно их произвести. В результате формируется новая фигура ученого-экспериментатора. Одним из первых таких ученых был Р. Гук, который в «Трактате об экспериментальном методе» неизменно восхваляет большую научную роль приборов и инструментов и прежде все­го как средства против ошибок чувственного опыта, превознося «верную руку» и «добросовестный глаз» и подчеркивая необходимость знакомства ученого со всевозможными ремеслами и искусствами.

Влияние инженерного мышления сказалось не только на эксперимен­тальной деятельности ученых, но и на самих научных представлениях. Чтобы осуществить эксперимент, необходимо уметь искусственно вызы­вать явления в возможно простом и чистом виде. Такой подход связан с идеализированным искусственно-естественным представлением, свойст­венным именно инженерному мышлению. Для эксперимента необходимо создать искусственные условия, которые не наблюдаются в природе. На­пример, Галилей не просто наблюдает за происходящими в природе про­цессами, а сначала строит искусственную идеализированную ситуацию, отвлекаясь от ее выполнимости техническими средствами, но принципи­ально реализуемую, хотя и не имеющую места в природе. Затем он разрабатывает проект технически реализуемой экспериментальной ситуации, скажем маятника, где сила тяжести отделена от приложенной к телу силы, и, наконец, на основе этого проекта может быть проведен реальный экспе­римент. В свою очередь, искусственно созданные в эксперименте ситуации сами должны быть представлены и описаны в научном плане как опреде­ленные естественные процессы. Рассуждая о механиках-практиках, Нью­тон, к примеру, пишет, что тяжесть рассматривалась ими не как сила, а как грузы, движимые машинами, а его самого как ученого-естествоиспытате­ля, исследующего не ремесла, а учение о природе, интересуют не усилия, производимые руками, а силы природы, другими словами, в науке искус­ственно воссозданным экспериментальным ситуациям должен быть при­дан естественный модус. Без этого полученные в эксперименте результаты нельзя считать научными. Следовательно, даже в эксперименте главный акцент должен делаться на естественном, в то время как в инженерной де­ятельности - на искусственном, хотя им обоим присуща «естественно-искусственная» позиция. Это объясняется различием задач эксперимен­тальной и инженерной деятельностей: основная цель эксперимента - обосновать с помощью искусственных средств теоретически выведенные естественные законы, цель же инженерной деятельности, учитывая эти за­коны, создать искусственные технические средства и системы для удовле­творения определенных человеческих потребностей. В этом и выражается сходство и взаимовлияние экспериментального естествознания и инже­нерной деятельности, выполняющих вместе с тем различные функции в современной культуре и имеющих разную направленность.

Таким образом, инженерно-проектная установка проникает в сферу на­учных, в том числе физических, исследований, считающихся носителем господствующего до сих пор в сознании многих ученых образа науки. Это относится не только к классическому, но и к современному неклассическо­му естествознанию, которое демонстрирует тесную связь теоретического исследования не только с экспериментом, но и с техническими применени­ями. Именно современная неклассическая физика продемонстрировала, какое огромное влияние на технические приложения может оказать мате­матизированное естествознание. Например, развитие ядерной физики не­посредственно привело к практическим техническим результатам как в во­енной сфере, так и в области мирного использования атомной энергии, где эксперимент непосредственно перерастает в отрасль промышленности. Да и сам эксперимент представляет собой сложнейшую область не только на­уки, но и техники. В США до Второй мировой войны в инженерном обра­зовании господствовала преимущественная ориентация на практическую, а не теоретическую подготовку инженеров. В новых же областях техники, развившихся преимущественно во время войны (техника сантиметровых волн, импульсная и компьютерная техника и т.п.), где практический опыт не компенсировал теоретических знаний, например квантовой механики, основной вклад в их развитие сделали физики. Они не имели опыта работы в области техники, но были достаточно основательно подготовлены в тео­ретической физике и математике.

Связь теоретической науки с промышленностью, инженерными при­ложениями является благотворной не только для техники, но и для са­мой науки. Очевидным подтверждением этому тезису служат космичес­кие исследования и космическая техника. Широкое использование компьютерной техники во всех областях науки и техники сопровождает­ся перенесением принципов, например самоорганизации, обобщенных в кибернетике, на системы неживой природы, причем способ функцио­нирования таких систем подчиняется одним и тем же основополагаю­щим принципам, независимо оттого, относятся они к области физики, химии, биологии или даже социологии. Например, такие процессы са­моорганизации вблизи лазерного источника света описываются лазер­ной физикой, причем лазер — это технический прибор, созданный именно на основе представлений неклассической физики.

Часто влияние техники на естествознание связывается с критикой механистических объяснений, причем утверждается, что, например, процессы саморегулирующегося гомеостазиса, характерные для живого, невозможно объяснить механически. Однако в настоящее время описа­ние саморегулирующихся гомеостатических устройств стало общим ме­стом в кибернетике. Механистическое объяснение, если его понимать как описание механизма природных явлений, не следует отождествлять с представлением мировой механики в виде пружинных часов с класси­ческим передаточным механизмом. С помощью такого рода аналогий, конечно, сегодня не могут быть научно объяснены природные явления, но ведь и современные часы выглядят иначе - они стали электронной схемой с микропроцессором. Важно не отождествлять описание меха­низма природных явлений с редукцией их к одному-единственному ос­новополагающему уровню (например, физико-химическому или атом­ному), признавать сложность связей элементов и взаимодействий в анализируемой системе и не считать приведенный на данном уровне развития науки список таких механизмов исчерпывающим.

– Конец работы –

Эта тема принадлежит разделу:

ФИЛОСОФИЯ ТЕХНИКИ И МЕТОДОЛОГИЯ ТЕХНИЧЕСКИХ НАУК

Роль и значение техники сегодня столь велико что выходят далеко за пределы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ТЕХНИКА КАК ПРЕДМЕТ ИССЛЕДОВАНИЯ ЕСТЕСТВОЗНАНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет философии техники и её задачи
  Хотя техника является настолько же древней, как и само человечество, и хотя она так или иначе попадала в поле зрения философов, как самостоятельная философская дисциплина философия

Техника и технология
  Истоки понятия «техника» уходят в глубь веков. Древнегреческое слово «techne» понималось очень широко: от умения ремесленника до мастерства в области высокого искусства. К области «

Техника и технология: взаимосвязь и различия
  Технология – совокупность действий (правил, приемов, методов), обеспечивающих трансформацию объектов (процессов) в результате производственно-хозяйственной деятельности для удовлетв

В технике
  а) Частные технологии. Первая ступень рационального обобщения в ремесленной технике по отдельным ее отраслям была связана с необходимостью обучения в рамках каждого отдельн

Соотношение науки и техники: линейная модель, эволюционная модель, техника науки и технические науки
  В современной литературе по философии можно выделить следующие основные подходы к решению проблемы изменения соотношения науки и техники: а) техника рассматривается как при

Специфика технических наук
  Технические науки – определенная система знаний о технико-технологических объектах (и соответствующих системах), т.е. предметах орудийной деятельности социума. Это область зн

Основные типы технических наук
  Современное техникознание – сложная система, включающая в общей форме следующие подсистемы: I. Знание, конкретизирующее соответствующие закономерности естествознания примен

Особенности методологии технических наук и методологии проектирования
  Эти особенности вытекает из особенностей естественных и технических наук. Естествознание: 1) Научное знание носит преимущественно теоретический характер;

Структура технической теории: теоретические схемы и абстрактные объекты; эмпирическое и теоретическое
  Как установлено, первые технические теории строились по образцу физических. В развитой естественнонаучной теории наряду с концептуальным и математическим аппаратом важную роль играю

Эволюционное и революционное развитие технической теории
Развитие технической теории проходит двумя основными способами - эволюционным и революционным. В первом случае происходит выделение новых исследовательских направлений и областей исследования в рам

СОЦИАЛЬНАЯ ОЦЕНКА ТЕХНИКИ КАК ПРИКЛАДНАЯ ФИЛОСОФИЯ ТЕХНИКИ
Мы находимся на той стадии научно-технического развития, когда нега­тивные последствия возможно и необходимо, хотя бы частично, предус­мотреть и минимизировать уже на ранних стадиях разработки ново

ЗАКЛЮЧЕНИЕ
Техника на рубеже второго и третьего тысячелетия предстает как сложнейший и многомерный феномен, природа и смысл которого по-прежнему нуждаются в философском осмыслении, связанные с ее экологизацие

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Горохов В.Г. Концепции современного естествознания и техники/ В.Г. Горохов. М., 2000. 2. Горохов В.С. Основы философии техники и технических наук/ В.С. Горохов. М., 2004. 3. Го

Воронеж 2007
  ББК 87.25   Киреев Е.М. Философские проблемы техники: учеб. пособие/ Е.М. Киреев. Воронеж: ГОУВПО «Воронежский государственный технический университет», 2007.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги