рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Расчет теоретического цикла проектируемого холодильника, работающего на озонобезопасном холодильном агенте R600a

Расчет теоретического цикла проектируемого холодильника, работающего на озонобезопасном холодильном агенте R600a - раздел Изобретательство, Методические указания по выполнению курсового проекта по дисциплине теория расчет и проектирование бытовой холодильной техники и кондиционеров по специальности 150408 бытовые машины и приборы Параметры Точки 5 (РО, V5, I5, S5...

Параметры точки 5 (Ро, v5, i5, S5) находятся по заданной температуре кипения tо для насыщенного пара R600а.

Термодинамические характеристики точки 8 (Рк, v8, i8, S8), соответствующей началу процесса конденсации, определяются по заданной температуре конденсации tк для насыщенного пара хладагента. Параметры точки 9 (Рк, v9, i9, S9) выбираются также по температуре tк, но для жидкой фазы хладагента.

Термодинамические параметры точки 3 (Р3, v3, i3, S3) определяются по заданной температуре t3=tос для насыщенной жидкости.

Термодинамические характеристики точки 1, соответствующей началу процесса дросселирования и находящейся в области переохлажденной жидкости (v1, i1, S1), определяются по заданной температуре переохлаждения t1 = tп для жидкой фазы хладагента. В случае, если температура tп не задана, ее значение рассчитывается из соотношения:

t1 = tк - (2 … 4) оС

Так как точка 1 располагается в зоне переохлажденной жидкости, давление хладагента не соответствует давлению насыщения при температуре t1 и вычисляется в зависимости от давления Рк:

Р1 = Рк - (0,03 - 0,05)×105 Па.

Основные параметры точек 6 и 7, соответствующих процессу изоэнтропического сжатия, определяются из термодинамических свойств перегретых паров хладагента. Все характеристики состояния рабочего вещества в данной таблице определяются по двум исходным параметрам, одним из которых является давления, а вторым - температура перегрева или другой известный показатель.

Значения удельного объема, энтальпии и энтропии перегретых паров в точке 6 (v6 , i6, S6) определяются по давлению Ро и температуре перегрева tпр = t6. Термодинамические параметры точки 7, соответствующей окончанию процесса сжатия в цилиндре компрессора, по давлению Рк. Вторым исходным параметром является энтропия, которая в изоэнтропическом процессе постоянна: S7 = S6. В случае, если величина S7 не совпадает с табличными, по двум ближайшим табличным значениям энтропии методом линейной интерполяции рассчитывается температура перегрева t7, а затем удельный объем v7 и энтальпия i7.

Точки 4 и 2 цикла холодильного агрегата соответствуют процессу дросселирования, который сопровождается образованием некоторого количества паров хладагента. Данные точки расположены на диаграмме в области парожидкостной смеси холодильного агента. Температура и энтальпия хладагента в точке 4 (t4, i4) рассчитывается из уравнения теплового баланса регенеративного теплообменника:

 

 

 

 

 

где С(3-4), С(5-6) - средняя удельная теплоемкость хладагента соответственно в капиллярной трубке и всасывающем трубопроводе;

Значения удельной теплоемкости в точке 3 находится по температуре tос, в точках 5 и 6 - по температурам tо и tпр. Удельная теплоемкость в точке 4 задается в зависимости от температуры окружающей среды следующим образом:

при tос=20оС удельная теплоемкость С4 выбирается по температуре -15оС,

при tос=25оС удельная теплоемкость С4 выбирается по температуре -13оС,

при tос=32оС удельная теплоемкость С4 выбирается по температуре -10оС,

при tос=43оС удельная теплоемкость С4 выбирается по температуре -5оС.

По рассчитанному значению температуры t4 определяется давление Р4. Массовое расходное паросодержание в точке 4 (Х4) вычисляется из соотношения:

 

 

где i4', i4'' - энтальпия жидкой и паровой фазы хладагента при температуре t4.

Значения удельного объема и энтропии вычисляются с помощью табличных данных и паросодержания Х4:

 

 

 

 

 

 

 

где v4', v4'' - удельный объем жидкого и парообразного хладагента при температуре t4;

S4', S4'' - энтропия жидкого и парообразного хладагента при температуре t4.

В точке 2 цикла холодильного агрегата заданы значения температуры хладагента t2 = tо, давления Р2 = Ро и известно значение энтальпии i2=i4, т.к. процесс дросселирования 4 - 2 является изоэнтальпическим. Массовое расходное паросодержание Х2 вычисляется из соотношения:

 

где i2', i2'' - энтальпия жидкой и паровой фазы хладагента при температуре t2 = tо.

Значения удельного объема и энтропии рассчитываются по табличным данным и паросодержания Х2:

 

 

 

 

 

 

где v2', v2'' - удельный объем жидкой и паровой фазы хладагента при температуре tо;

S2', S2'' - энтропия жидкого и парообразного хладагента при температуре tо.

 

ХК t, P, v, i, S,
-10 1,090 0,3309 542,13 2,3020
1,090 0,3902 610,88 2,5540
92,25 7,814 0,0594 706,84 2,5540
7,814 0,0511 629,76 2,3434
7,814 0,001948 333,98 1,4420
7,714 0,001834 275,28 1,2587
4,314 0,001834 275,28 1,2587
1,693 0,0029 206,53 1,0237
-10 1,090 0,0293 206,53 1,0331

 

МК t, P, v, i, S,
-20 0,728 0,4819 528,78 2,3059
0,728 0,5895 612,10 2,6045
98,95 7,814 0,0610 721,09 2,6045
7,814 0,0511 629,76 2,3434
7,814 0,001948 333,98 1,4420
7,714 0,001834 275,28 1,2587
4,314 0,001834 275,28 1,2587
-5 1,316 0,0042 191,96 0,9705
-20 0,728 0,0473 191,96 0,9716

– Конец работы –

Эта тема принадлежит разделу:

Методические указания по выполнению курсового проекта по дисциплине теория расчет и проектирование бытовой холодильной техники и кондиционеров по специальности 150408 бытовые машины и приборы

Федеральное агентство по образованию.. государственное образовательное учреждение высшего профессионального.. восточно сибирский государственный технологический..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Расчет теоретического цикла проектируемого холодильника, работающего на озонобезопасном холодильном агенте R600a

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Цель и задача курсовой работы
Целью выполнения курсового проекта м (КП) работы по дисциплине «ТЕОРИЯ, РАСЧЕТ И ПРОЕКТИРОВАНИЕ БЫТОВОЙ ХОЛОДИЛЬНОЙ ТЕХНИКИ И КОНДИЦИОНЕРОВ» является развитие и закрепление знаний, конструкторских

Порядок и правила оформления расчетно-пояснительной записки и чертежно-графической части проекта.
Графическая часть КП выполняется с использованием программного обеспечения, и включает: Общий вид холодильника, компоновочные схемы агрегата, схема холодильника. сборочный чертеж компрессоров для х

Конструкторский расчет шкафа холодильника
  Толщина стенки холодильной камеры δХК = 45 мм. Толщина стенки морозильной камеры δМК = 68 мм. Длина шкафа холодильника а = 590 мм.

Расчет площадей стенок холодильника
  Расчет площадей теплопередающих поверхностей: 1- верх низкотемпературной камеры; F1 = 0,59 × 0,6 = 0,354 м2 2- боковые стенки

Теплопритоки из окружающей среды
Теплопритоки из окружающей среды составляют значительную часть общей тепловой нагрузки холодильной установки. Тепловой поток ив окружа­ющего воздуха постоянно проникает в камеры холодильника за сче

Теплопритоки от воздухообмена
Воздухообмен в охлаждаемом пространстве камер холодильной установки происходит за счёт инфильтрации при открывании дверей и через уплотнения дверных проемов. Количество наружного воздуха, поступающ

Теплопритоки от продуктов
Расчет тепловой нагрузки от продуктов производится в зависимости от ряда факторов, в том числе, температуре в камере холодильника. В случае, если температура в холодильной камере( ) поддерживается

Дополнительные теплопритоки
Источниками дополнительной тепловой нагрузки в бытовых холодильни­ках и морозильниках являются лампы освещения, электродвигатели привода вентиляторов для циркуляции охлажденнго воздуха в системах «

Упрощенный расчет эксплуатационной тепловой нагрузки
Теплопритоки от продуктов, воздухообмена и дополнительные теплопритоки в сумме представляют собой эксплуатационную тепловую нагрузку. При проведении тепловых расчетов морозильников и морозильных ка

Выбор холодопроизводительности холодильного агрегата и компрессора
Полученное в результате расчетов по формуле (1) значение суммарных теплопритоков является тепловой нагрузкой испарителя. При расчетах двухкамерных холодильников с двухиспарительной системой охлажде

Выбор компрессора
На основании параметров теоретического цикла выполнили расчет теоретического компрессора по формулам: , (1) где кQ — удельная теоретическая холодопроизводительность, [В

Расчет теоретического цикла
Круговым процессомили цикломназы­вается такая совокупность термодинамиче­ских процессов, в результате которых систе­ма возвращается в исходное состояние.

Расчет необходимой поверхности испарителя
Тепловоспринимающая поверхность испарителя определяется: (12) где Ku - коэффициент теплопередачи испарителя Вт /(

Тепловой расчет конденсатора
Теплоотдающая поверхность конденсатора определяется из формулы: (19) где Qкон - тепловая нагрузка конденсатора Дж

Расчет капиллярных трубок
В капиллярной трубке происходят процессы адиабатического (с подводом или отводом тепла ) течения с большой скоростью и , соответственно, с большой потерей напора в начале жидкого , а затем смеси жи

Расчет капиллярной трубки морозильной камеры
Капиллярная трубка морозильной камеры была выбрана с помощью программы «DanCap». В эту программу были введены заданные параметры хладагента: Название хладагента – R600a; Тепловая

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги