рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Радиационная защита предприятия. Обеспечение устойчивой работы предприятия в условиях радиоактивного заражения

Радиационная защита предприятия. Обеспечение устойчивой работы предприятия в условиях радиоактивного заражения - раздел Охрана труда, Стр. Часть I. Введение. 1-1. Воздействие Радиоактивного Заражения На Людей, ...

Стр. Часть I. Введение. 1-1. Воздействие радиоактивного заражения на людей, животных и с/х растительность. 1-2. Что такое радиация.Свойства и механизм поражающего действия Альфа, бета и гамма нейтронного излучений. 1-3. Параметры радиоактивного заражения и единицы их измерения. 1-4. Формы, степени тяжести и предразвития лучевой болезни у людей в зависимости от степени облучения. 1-5. Содержан6ие закона о радиационной безопасности населения. Часть II. 2-1. Определение работоспособности предприятия в условиях возможного радиоактивного заражения. Часть III 3-1. Оценка радиационной обстановки и определение режимов защиты предприятия в условиях радиоактивного заражения.

Заключение по работе. Часть I. Введение Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику.

Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

Проблема радиационного загрязнения стала одной из наиболее актуальных. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию. На примере Чернобыльской трагедии мы можем сделать вывод о чрезвычайно большой потенциальной опасности атомной энергетики: при любом минимальном сбое АЭС, особенно крупная, может оказать непоправимое воздействие на всю экосистему Земли. Масштабы Чернобыльской аварии не могли не вызвать оживленного интереса со стороны общественности.

Но мало кто догадывается о количестве мелких неполадок в работе АЭС в разных странах мира. Так, в статье М.Пронина, подготовленной по материалам отечественной и зарубежной печати в 1992 году, содержатся следующие данные: «…С 1971 по 1984 гг. На атомных станциях ФРГ произошла 151 авария. В Японии на 37 действующих АЭС с 1981 по 1985 гг. зарегистрировано 390 аварий, 69% которых сопровождались утечкой радиоактивных веществ.… В 1985 г. в США зафиксировано 3 000 неисправностей в системах и 764 временные остановки АЭС…» и т.д. Осталось указать несколько искусственных источников радиационного загрязнения, с которыми каждый из нас сталкивается повседневно.

Это, прежде всего, строительные материалы, отличающиеся повышенной радиоактивностью. Среди таких материалов – некоторые разновидности гранитов, пемзы и бетона, при производстве которого использовались глинозем, фосфогипс и кальциево-силикатный шлак. Известны случаи, когда стройматериалы производились из отходов ядерной энергетики, что противоречит всем нормам.

К излучению, исходящему от самой постройки, добавляется естественное излучение земного происхождения. Существует огромное количество общеупотребительных предметов, являющихся источником облучения. Это, прежде всего, часы со светящимся циферблатом, которые дают годовую ожидаемую эффективную эквивалентную дозу, в 4 раза превышающую ту, что обусловлена утечками на АЭС, а именно 2 000 чел-Зв. Равносильную дозу получают работники предприятий атомной промышленности и экипажи авиалайнеров.

При изготовлении таких часов используют радий. Наибольшему риску при этом подвергается, прежде всего, владелец часов. Радиоактивные изотопы используются также в других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д. При производстве детекторов дыма принцип их действия часто основан на использовании альфа-излучения.

При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран. Очень незначительны дозы облучения от цветных телевизоров и рентгеновских аппаратов для проверки багажа пассажиров в аэропортах. 1-1. Воздействие радиоактивного заражения на людей, животных и с/х растительность. Радиоактивные излучения вызывают ионизацию атомов и молекул живых тканей, в результате чего происходит разрыв нормальных связей и изменение химической структуры, что влечет за собой либо гибель клеток, либо мутацию организма.

Действие мощных доз ионизирующих излучений вызывает гибель живой природы. Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: альфа-частицы наиболее опасны, однако для альфа-излучения даже лист бумаги является непреодолимой преградой; бета-излучение способно проходить в ткани организма на глубину один-два сантиметра; наиболее безобидное гамма-излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению.

Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения: 0,03 – костная ткань 0,03 – щитовидная железа 0,12 – красный костный мозг 0,12 – легкие 0,15 – молочная железа 0,25 – яичники или семенники 0,30 – другие ткани 1,00 – организм в целом. Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз. Тем не менее, существуют дозы, при которых летальный исход практически неизбежен.

Так, например, дозы порядка 100 Гр приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 Гр смерть наступает через одну-две недели, а доза в 3-5 Гр грозит обернуться летальным исходом примерно половине облученных.

Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения. Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения.

В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения. Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний.

Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами «по популярности» следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани. Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше. Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций.

Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным. Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

Приходится оценивать появление наследственных дефектов у человека по результатам экспериментов на животных. При оценке риска НКДАР использует два подхода: при одном определяют непосредственный эффект данной дозы, при другом – дозу, при которой удваивается частота появления потомков с той или иной аномалией по сравнению с нормальными радиационными условиями.

Так, при первом подходе установлено, что доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных. При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 Гр на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению.

Оценки эти ненадежны, но необходимы. Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 Гр на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни – также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при постоянном облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет. 1-2. Что такое радиация.

Свойства и механизм поражающего действия Альфа, Бета и Гамма -нейтронного излучений. Что такое радиация Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад.

В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина «радиоактивность») и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием.

К сожалению, люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь, опасности из-за частого контакта с радиоактивными веществами. Несмотря на это, исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома.

Различают следующие виды радиоактивных излучений: альфа, бета, нейтронное, рентгеновское, гамма. Первые три вида излучений являются корпускулярными излучениями, т. е. потоками частиц, два последних - электромагнитными излучениями. Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва (аварии), но и на расстоянии десятков и даже сотен километров от него. В отличие от других поражающих факторов, действие которых проявляется в течение относительно короткого времени после ядерного взрыва, радиоактивное заражение местности может быть опасным на протяжении нескольких суток и недель после взрыва.

Наиболее сильное заражение местности происходит при наземных ядерных взрывах, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией. Сами радиоактивные вещества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть изменена какими-либо физическими или химическими методами.

Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30— 50 мкм, принято называть ближним следом заражения. На больших расстояниях — дальний след — небольшое заражение местности не влияет на работоспособность персонала. Источники радиационного излучения Существует два способа облучения: если радиоактивные вещества находятся вне организма и облучают его снаружи, то речь идет о внешнем облучении.

Другой способ облучения – при попадании радионуклидов внутрь организма с воздухом, пищей и водой – называют внутренним. Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон. Естественные источники радиации Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14). Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения.

Уровни радиационного излучения неодинаковы для различных областей.

Так, Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей из-за наличия у Земли магнитного поля, отклоняющего заряженные радиоактивные частицы. Кроме того, чем больше удаление от земной поверхности, тем интенсивнее космическое излучение.

Иными словами, проживая в горных районах и постоянно пользуясь воздушным транспортом, мы подвергаемся дополнительному риску облучения. Люди, живущие выше 2000м над уровнем моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу в несколько раз большую, чем те, кто живет на уровне моря. При подъеме с высоты 4000м (максимальная высота проживания людей) до 12000м (максимальная высота полета пассажирского авиатранспорта) уровень облучения возрастает в 25 раз. Примерная доза за рейс Нью-Йорк – Париж по данным НКДАР ООН в 1985 году составляла 50 микрозивертов за 7,5 часов полета.

Уровни земной радиации также распределяются неравномерно по поверхности Земли и зависят от состава и концентрации радиоактивных веществ в земной коре. Так называемые аномальные радиационные поля природного происхождения образуются в случае обогащения некоторых типов горных пород ураном, торием, на месторождениях радиоактивных элементов в различных породах, при современном привносе урана, радия, радона в поверхностные и подземные воды, геологическую среду.

По территории России зоны повышенной радиоактивности также распределены неравномерно и известны как в европейской части страны, так и в Зауралье, на Полярном Урале, в Западной Сибири, Прибайкалье, на Дальнем Востоке, Камчатке, Северо-востоке. Среди естественных радионуклидов наибольший вклад (более 50%) в суммарную дозу облучения несет радон и его дочерние продукты распада (в т.ч. радий). Опасность радона заключается в его широком распространении, высокой проникающей способности и миграционной подвижности (активности), распаде с образованием радия и других высокоактивных радионуклидов. Период полураспада радона сравнительно невелик и составляет 3,823 суток.

Радон трудно идентифицировать без использования специальных приборов, так как он не имеет цвета или запаха. Одним из важнейших аспектов радоновой проблемы является внутреннее облучение радоном: образующиеся при его распаде продукты в виде мельчайших частиц проникают в органы дыхания, и их существование в организме сопровождается альфа-излучением.

И в России, и на западе радоновой проблеме уделяется много внимания, так как в результате проведенных исследований выяснилось, что в большинстве случаев содержание радона в воздухе в помещениях и в водопроводной воде превышает ПДК. Так, наибольшая концентрация радона и продуктов его распада, зафиксированная в нашей стране, соответствует дозе облучения 3000-4000 бэр в год, что превышает ПДК на два-три порядка.

Полученная в последние десятилетия информация показывает, что в Российской федерации радон широко распространен также в приземном слое атмосферы, подпочвенном воздухе и подземных водах. В России проблема радона еще слабо изучена, но достоверно известно, что в некоторых регионах его концентрация особенно высока. К их числу относятся так называемое радоновое «пятно», охватывающее Онежское, Ладожское озера и Финский залив, широкая зона, простирающаяся от Среднего Урала к западу, южная часть Западного Приуралья, Полярный Урал, Енисейский кряж, Западное Прибайкалье, Амурская область, север Хабаровского края, Полуостров Чукотка.

Источники радиации, созданные человеком (техногенные) Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных.

Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно обусловленное загрязнение. Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия.

Следующий источник облучения, созданный руками человека – радиоактивные осадки, выпавшие в результате испытания ядерного оружия в атмосфере, и, несмотря на то, что основная часть взрывов была произведена еще в 1950-60е годы, их последствия мы испытываем на себе и сейчас. В результате взрыва часть радиоактивных веществ выпадает неподалеку от полигона, часть задерживается в тропосфере и затем в течение месяца перемещается ветром на большие расстояния, постепенно оседая на землю, при этом оставаясь примерно на одной и той же широте.

Однако большая доля радиоактивного материала выбрасывается в стратосферу и остается там более продолжительное время, также рассеиваясь по земной поверхности. Радиоактивные осадки содержат большое количество различных радионуклидов, но из них наибольшую роль играют цирконий-95, цезий-137, стронций-90 и углерод-14, периоды полураспада которых составляют соответственно 64 суток, 30 лет (цезий и стронций) и 5730 лет. По данным НКДАР, ожидаемая суммарная коллективная эффективная эквивалентная доза от всех ядерных взрывов, произведенных к 1985 году, составляла 30 000 000 чел-Зв. К 1980 году население Земли получило лишь 12% этой дозы, а остальную часть получает до сих пор и будет получать еще миллионы лет. Один из наиболее обсуждаемых сегодня источников радиационного излучения является атомная энергетика.

На самом деле, при нормальной работе ядерных установок ущерб от них незначительный.

Дело в том, что процесс производства энергии из ядерного топлива сложен и проходит в несколько стадий. На каждом этапе происходит выделение в окружающую среду радиоактивных веществ, причем их объем может сильно варьироваться в зависимости от конструкции реактора и других условий. Кроме того, серьезной проблемой является захоронение радиоактивных отходов, которые еще на протяжении тысяч и миллионов лет будут продолжать служить источником загрязнения.

Дозы облучения различаются в зависимости от времени и расстояния. Чем дальше от станции живет человек, тем меньшую дозу он получает. Из продуктов деятельности АЭС наибольшую опасность представляет тритий. Благодаря своей способности хорошо растворяться в воде и интенсивно испаряться тритий накапливается в использованной в процессе производства энергии воде и затем поступает в водоем-охладитель, а соответственно в близлежащие бессточные водоемы, подземные воды, приземной слой атмосферы.

Период его полураспада равен 3,82 суток. Распад его сопровождается альфа-излучением. Повышенные концентрации этого радиоизотопа зафиксированы в природных средах многих АЭС. Проникающая радиация ядерного взрыва представляет собой совместное -излучение и нейтронное излучение. -излучение и нейтронное излучение различны по своим физическим свойствам, а общим для них является то, что они могут распространяться в воздухе во все стороны на расстояния до 2,5—3 км. Проходя через биологическую ткань, -кванты и нейтроны ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания — лучевой болезни. 1-3.

Параметры радиоактивного заражения и единицы их измерения

2-1. 3) Основные обязанности граждан: - соблюдение законов и иных нормативн... При взрыве зарядов деления и комби¬нированных зарядов время действия п... Согласно этому закону центр ответственности за выполнение указанных ме... Что¬бы определить экспозиционную дозу излучения для другого значения у...

| ВРЕМЯ ПРЕБЫВАНИЯ, ч начала облучения | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 11 | 12 | с момента взрыва, ч | Экспозиционные дозы излучения (Р), получаемые на откр. | местности при уровне радиации 100Р/ч на 1ч после ЯВ. 0.5 | 113 | 158 | 186 | 204 | 231 | 249 | 262 | 273 | 310 | 1 |64.8 |98.8 | 121 | 138 | 161 | 178 | 190 | 201 | 237 | 2 | 34 |56.4 |72.8 |85.8 | 105 | 119 | 131 | 140 | 174 | 4 |16.4 |29.4 |40.2 |49.2 |63.4 |74.7 |83.8 |91.6 | 122 | 6 |10.6 |19.4 |27.0 |33.8 |45.0 |54.2 |62.0 |68.7 |96.6 | 8 | 7.6 |14.4 |20.4 |25.6 |34.8 |42.6 |49.3 |55.1 |80.5 | 10 | 6.0 |11.2 |16.0 |20.4 |28.2 |34.9 |40.7 |46.0 |69.4 | 12 | 4.8 | 9.2 |13.2 |17.0 |23.7 |29.5 |34.8 |39.6 |60.8 | 24 | 2.2 | 4.3 | 6.3 | 8.3 |12.0 |15.8 |18.5 |21.4 |35.1 | По многочисленным данным, собранным в Хиросиме и Нагасаки, отме¬чены следующие степени поражения людей после воздействия на них однок¬ратных доз излучения: 1100 - 5000 Р - 100% смертность в течение одной недели; 550 - 750 Р - смертность почти 100%; небольшое количество людей, оставшихся в живых, выздоравливает в течении примерно 6 месяцев; 400 - 550 Р - все пораженные заболевают лучевой болезнью; смертность около 50%; 270 - 330 Р - почти все пораженные заболевают лучевой болезнью; смертность 20%; 180 - 220 Р - 50% пораженных заболевают лучевой болезнью; 130 - 170 Р - 25% пораженных заболевают лучевой болезнью; 80 - 120 Р - 10% пораженных чувствует недомогание и усталость без серьезной потери трудоспособности. 0 - 50 Р - отсутствие признаков поражения Если же период облучения будет больше четырех суток, то в облу¬ченном организме начинают протекать процессы восстановления пораженных клеток.

Эффективность воздействия на организм человека однократной до¬зы излучения с течением времени после облучения составляет через: 1 неделю - 90%, 3 недели - 60%, 1 месяц - 50%, 3 месяца - 12%. Например, если люди были облучены экспозиционной дозой 30P три недели назад, то остаточная доза радиации составляет 30 * 0.6 = 18Р. Таким образом, зная возможные дозы излучения и степень поражения ими людей, можно оп¬ределить вероятные потери среди населения.

Под режимом защиты рабочих, служащих и производственной деятель¬ности объекта понимается порядок применения средств и способов защиты людей, предусматривающий максимальное уменьшение возможных экспозици¬онных доз излучения и наиболее целесообразные их действия в зоне ради¬оактивного заражения.

Режимы защиты для различных уровней радиации и условий производс¬твенной деятельности, пользуясь расчетными формулами, определяют в мирное время, т.е. до радиоактивного заражения территории объекта.

Определение допустимого времени начала преодоления зон (участков) радиоактивного заражения производится на основании данных радиационной разведки по уровням радиации на маршруте движения и заданной экспози¬ционной дозе излучения.

Для облегчения решения задач по оценке радиационной обстановки для уровней радиации от десятков до тысяч рентген в час разрабатывают возможные режимы проведения СНАВР и производственной деятельности для каждого объекта, которые оформляют в виде таблиц и графиков и исполь¬зуют для принятия решений в условиях непосредственного радиоактивного заражения территории объекта.

Расчетная часть.

Пример: Персональные данные: t0= 2 часа tпереходн.= 5 часов П0 = 90 р/ч Чрезвычайная ситуация сложилась в сельской местности, в поселке городского типа. Количество жителей – 5000 чел. Здания – бетон, кирпич Предприятие – завод. Количество сотрудников – 500 чел. Во время ЧС устанавливается, с учетом условной работы персонала и состояния их защищенности, работа в 1-4 смены, продолжительность до 8 часов. Суммарная доза однократного допустимого облучения до 50 Р.; продолжительность работы 4 суток. 1) Измеренный (известный) уровень радиации переводим в «эталонный» для того, чтобы воспользоваться закономерностью спада дозы: Р1 (через 1 час) = Р0 (измеренный уровень) • t1.20= 75р/ч •21,2 =90р/ч•2,3=207р/ч 1 час – 207 р/ч 7 часов – 20.7 р/ч 49 часов – 2.07 р/ч 343 ч. (2 недели) – 0.207 р/ч 0.207 р/ч < 0.5 (порог опасной ситуации) Вывод: в течении 2-х недель будет оставаться опасная радиационная ситуация.

Такая обстановка требует использования средств для защиты лица, тела, органов дыхания: респиратор, комбинезон или плащ-накидка, сапоги из кожи или кожзаменителя, для того, чтобы ограничить попадание пыли на открытые участки тела. 2) определяются дозы, которые может получить персонал: Дозу излучения можно определить и по упрощенной формуле где — среднее значение мощности дозы за время пребывания на зараженной местности, Р/ч; t — длительность пребывания на зараженной местности, (ч); РН и Рк—мощность дозы на время начала и окончания облучения соответственно,(Р/ч). Кз на открытой местности = 1 Кз в легковом автомобиле =2 Кз в деревянном, кирпичном здании, железо-бетонной постройке = 7-10 (1-й этаж), 20 (2-й этаж), 30 (3-й этаж) и т.д. Кз подвальные помещения (толстый слой почвы, бетонные конструкции) – в десятки – сотни раз. tk = 2 ч. + 5 ч. (переходный период) = 7 ч. Рср= Рср = (средний уровень радиации на открытой местности) – доза, получаемая персоналом гражданской обороны (1/10 от всего персонала) во время действий на открытой местности.

Т.е. если предположить, что на предприятии работает 500 человек, из них – 50 человек (персонал ГО) будет находится 7 часов на открытой местности, то уровень полученного облучения будет равен 411.6 р что означает - все пораженные заболевают лучевой болезнью; смертность около 50% (25 человек). Оценка устойчивости работы предприятия в условиях радиоактивного заражения После проведения предварительных подсчетов имеющейся и ожидаемой радиационной обстановки, определяются дозы облучения и радиационные потери.

При второй или средней степени радиационного облучения из общего числа пораженных от 5 до 15% безвозвратные потери, часть возращается к трудовой деятельности только через 2-4 месяца лечения.

При третьей степени радиационного поражения все или частично люди, животные, растения подвергаются излучению; безвозвратные потери от 20 до 80%. Выводы: на первые дни ЧС (предстоящие 4 суток) необходимо определить наиболее эффективный режим защиты персонала для обеспечения устойчивой работы предприятия. 2) Первое действие - устанавливаем режим защиты (предварительный), близкий к мирному времени: определяем время пребывания в противорадиационных укрытиях, производственных зданиях, на открытой местности и в жилых зданиях: Tпр=0ч Тпз=8ч Том=0,5ч Тжз=15.5ч Кратность ослабления излучений отражает степень снижения дозы только при условии, если персонал пребывает в данном укрытии непрерывно.

При периодиче¬ском использовании укрытий можно применять среднюю кратность ослабления дозы излучения Сср, определяемую по формуле где t&#8721; — общее время нахождения персонала в зара¬женном районе (t1 + t2 + t3), t1— время работы на открытой местности; t2 и tз — время пребывания в укрытиях с крат¬ностью ослабления, равной соответственно КОСЛ2 и КОСЛз Результаты расчета доз излучения могут использовать¬ся как исходные данные для оценки работоспособности персонала.

Вычисляется коэффициент защищенности: Сз= Определение суточной дозы излучения (Дс) ( за 4 суток) по формуле: Дс=5•Р0•Т01.2•( ), где ро— мощность дозы (Р/ч), к моменту времени t0, ч, после начала радиационного заражения; t1—время начала облучения, ч; t2—время окончания облучения (ч.) Д1с=5•90•21.2•( )=5*90*2.3*0.348=360р/ч (для открытой местности) Д2с=5•90•21.2•( )=1035*0.058=60р/ч Д3с=5•90•21.2•( )=1035*0.029=30р/ч Д4с=5•90•21.2•( )=1035*0.0197=20.4р/ч &#8721;Д=360=60=30=20.4=470.4 (открытая местность) › 50р/ч (безопасная доза) Вывод: предварительный режим не обеспечивает необходимую защиту персонала от облучения.

Время превышения нормы уточняется введением коэффициента безопасной защищенности на каждые сутки в отдельности.

Сбз= 14.4 (1-сутки); 6 (2-сутки); 3.75 (3-сутки); 2.9 (4-сутки) Сбз должен быть меньше или равен Сз Т.к. Сз =8.4, делаем вывод, что 1-е сутки не отвечают необходимым нормам защиты от облучения.

Для первых суток введем Тпр=16.4ч, Тпз=6ч; Том=0,6ч; Тжз=1ч Время в производственных зданиях поделим на несколько смен. Сз1= сутки Сз (р/ч) Сбз (р/ч) Тпру (ч) Тпз (ч) Тжз (ч) Том (ч) 1 14.74 14.4 16.4 6 1 0.6 2 8.4 6 0 8 15.5 0.5 3 8.4 3.75 0 8 15.5 0.5 4 8.4 2.9 0 8 15.5 0.5 Заключение по работе.

Рассматриваемое предприятие в целом готово к работе в радиационной обстановке, но процент потерь в зависимости радиационного поражения неизбежен. В результате исследований выявляются слабые места в работе предприятия и даются рекомендации руководителю предприятия по устранению этих слабых мест и по повышению устойчивости работы объекта. Мероприятия по предупреждению аварий и катастроф представляют собой комплекс организационных и инженерно - технических мероприятий, направленных на выявление и устранение причин этих явлений, максимальное снижение возможных разрушений и потерь, если эти причины полностью неудается устранить, а также на создание благоприятных условий для проведения спасательных и аврийно-восстановительных работ.

Наиболее эффективное мероприятие - закладка в проекте вновь создаваемых объектов планировочных, технических и технологических решений, максимально уменьшающих вероятность возникновения аварий, или снижающих материальный ущерб в случае, если авария произойдет. Учитываются требования охраны труда, техники безопасности, правила эксплуатации энергетических установок, подъемно - транспортного оборудования, емкостей под высоким давлением и т.д Вывод: В план работ по повышению устойчивости предприятия к возможным ЧС вносятся предложения: в 1-й год – провести обучение персонала; во 2-й год – восстановление средств оповещения; затем – создание средств защиты зданий.

Список использованной литературы 1. (1-2) Экология, охрана природы и экологическая безопасность.: Учебное пособие/Под ред. проф. В.И.Данилова-Данильяна.

В 2 кн. Кн. 1. М.: Изд-во МНЭПУ, 1997. – 424 с. 2. Брошюра «Радиация. Дозы, эффекты, риск». 3. статья М.Пронина, подготовленной по материалам отечественной и зарубежной печати в 1992 году. 4. Зайцев А.П «Защита населения в чрезвычайные ситуации», выпуск №2 (темы с 8 по 14). – М.: « Военное знание», 2000. 5. (1-2) Защита от оружия массового поражения.

В.В. Мясников. – М.: Воениздат, 1984. 6. (1-2) Бобок С.А Юртушкин В.И. Чрезвычайные ситуации: защита населения и территорий. – М.: «Издательство ГНОМ и Д», 2000. 7. (3-1) Лекционный материал.

– Конец работы –

Используемые теги: Радиационная, Защита, пред, ятия, Обеспечение, устойчивой, работы, пред, ятия, условиях, радиоактивного, заражения0.161

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Радиационная защита предприятия. Обеспечение устойчивой работы предприятия в условиях радиоактивного заражения

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Обеспечение устойчивости работы с/х предприятия "Дружба" в условиях радиоактивного заражения
Толщина этих преград зависит от проникающей способности данного вида излучения и его интенсивности.Наиболее простой является защита от альфа –… Пробег бета – частиц зависит от их энергии.Например, при энергии порядка 3 МэВ… Лучшим поглотителем гамма – частиц является свинец. Поэтому для защиты от гамма – излучения радиоактивные препараты…

Обеспечение работы с/х предприятия в условиях радиактивного заражения
Лучевая болезнь у животных. Внешнее воздействие бета-частиц на людей и животных.Внутреннее поражение людей и животных РВ. Действие продуктов взрыва… Люди, как известно, составляют наивысшую ценность нашего социалистического… К таким мероприятиям относятся обеспечение всего населения защитными сооружениями и средствами индивидуальной защиты…

Анализ и поиски путей совершенствования работы предприятия "Фортуна" на основе экспертного анализа работы предприятий автосервиса
Увеличение масштабов производства автомобилей приводит к росту абсолютного объема ремонтных работ, и, как следствие этого, к росту предприятий,… Особенно большой приток автомобильного транспорта наблюдается по Приморскому… Требования, предъявляемые к их обслуживанию и ремонту, стали значительно выше. Эффективность работы автомобиля в…

Курсовая работа По дисциплине: Экономика предприятия На тему: Прогнозирование банкротства предприятия Поэтому вопрос о прогнозировании вероятности наступления банкротства не теряет своей актуальности
Курсовая работа... По дисциплине Экономика предприятия На тему Прогнозирование банкротства предприятия...

Общая характеристика ресурсов предприятия. Особенности ресурсного обеспечения туристских предприятий
Тема Предприятие как субъект и объект предпринимательской деятельности... Предприятие как субъект предпринимательской деятельности... Предприятие как социально экономическая система...

Курсовая работа по дисциплине Планирование на предприятии Бизнес-планирование на предприятии
Новосибирский государственный технический университет... Факультет дистанционного образования... Курсовая работа...

Аудит соответствия деятельности предприятия требованиям обеспечения безопасности предприятия и окружающей среды
Организация деятельности по экологическому аудированию как вида предпринимательской деятельности должна соответствовать нормам гражданского… Деятельность в области производственного экологического управления… Управление производственным объединением и промышлен¬ным предприятием. Основные положения" и является обязательной.…

КУРСОВАЯ РАБОТА На тему: Система налогообложения предприятий на примере ООО Визит Дисциплина: Финансы предприятий
ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ... ЗАПОРОЖСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ... ЭКОНОМИКО ГУМАНИТАРНЫЙ ФАКУЛЬТЕТ В Г МЕЛИТОПОЛЕ...

По учебно-методической работе ВЫПОЛНЕНИЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ СПЕЦИАЛИСТА ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ Методические указания Специальность 0805021-Экономика и управление на предприятии машиностроения
Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования Санкт Петербургский государственный...

Лекция 8 Ценовая политика предприятия. Ценовая политика предприятия и этапы её формирования
Ценовая политика предприятия и этапы е формирования... Ценовая политика является составной частью общей политики предприятия и... Поведение предприятия на рынке может быть пассивным и активным что определяет и степень активности ценовой...

0.038
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам