Измерение сопротивления изоляции

Основнымивидами оценки качества электрической изоляции являются измерение величины сопротивления изоляции и испытание изоляции на электрическую прочность.

Измерение изоляции обычно измеряется на постоянном токе при помощи мегаомметра и является основным показателем состояния изоляции сетей, электроаппаратов, приборов и проводов.

Проверку сопротивления изоляции электрооборудования, работающих при номинальном напряжении до 500В, производят мегаомметром на 500В, а при номинальном напряжении свыше 500В – мегаомметром на 1000В.

На рис.17 представлен участок трёхфазной сети переменного тока с изолированной

Рис.17. Схема участка трёхфазной сети переменного тока с изолированной нейтралью: Rа, Rб, Rc – сопротивление изоляции фаз относительно земли

нейтралью. В таких схемах обычно измеряется сопротивление изоляции каждой фазы относительно земли. Величина сопротивления изоляции отдельной фазы относительно земли не может служить критерием безопасности, так как ток замыкания на землю, а следовательно, и ток через человека, определяется полным сопротивлением изоляции всей сети относительно земли.

Полное сопротивление изоляции сети определяется по формуле

, (28)

 


Зная полное сопротивление изоляции сети, можно получить значение величины тока через человека, при прикосновении его к одной из фаз, из следущего выражения:

, (29)

Наиболее полное представление о состоянии изоляции сети и электроустановки с точки зрения безопасной эксплуатации может быть получено в том случае, если сопротивление изоляции данной сети и электроустановки измерено в нормальных эксплуатационных условиях, т.е. при рабочем напряжении и включенных токоприёмниках. В этих условиях учитывается сопротивление изоляции всех участков сети, а также зависимость сопротивления от напряжения. Этому требованию наиболее полно удовлетворяют устройства непрерывного контроля сопротивления изоляции.

Наибольшее распространение получили так называемы схемы непрерывного контроля сопротивления изоляции на выпрямленных токах. Контроль сопротивления изоляции выпрямленными токами предполагает использование так называемых вентильных схем. В таких схемах необходимые для работы токи образуются посредством трёх вентилей, подключенных к фазам контролируемой сети (рис.18). Общая точка вентилей, соединяется с землёй через килоомметр PR и сигнальное реле K. Килоомметр измеряет сопротивление изоляции сети относительно земли, а сигнальное реле приводит в действие световую или звуковую сигнализацию при снижениисопротивления изоляции ниже установленного предела.

Среднее значение тока нагрузки в вентельной схеме контроля изоляции не зависит от

Рис.18. Вентильная схема контроля сопротивления изоляции: VD – диоды; PR – килоомметр: K – реле; Rа, Rб, Rс – сопротивление изоляции фаз

ассиметрии сопротивлений изоляции отдельных фаз и всегда пропорционально полному сопротивлениюизоляции относительно земли.

Схемы непрерывного контроля состояния изоляции с помощью трёх вольтметров (рис.19) по своему принципу действия не могут осуществлять измерение величины

Рис.19. Схема непрерывного контроля изоляции с помощью трёх вольтметров

сопротивления изоляции сети относительно земли. Их главное назначение состоит в контроле однофазных замыканий на землю, т.е. повреждений, при которых сопротивление сети относительно земли становится близким к нулю.

При исправной изоляции вольтметры показывают напряжение, приблизительно равное фазному. В случаях глухого замыкания на землю один из них показывает нуль, а два других – линейное напряжение. По показаниям вольтметра можно судить лишь о наличии или отсутствии замыканий на землю, а не о величине сопротивления изоляции. При симметричном снижении сопротивлений вплоть до короткого замыкания вольтметры будут постоянно показывать напряжения, равные фазному.