рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Квантовое описание лазера

Квантовое описание лазера - раздел Охрана труда, Квантовое описание лазера ...

Возбуждённая частица может перейти в менее энергетическое состояние самопроизвольно в результате спонтанного излучения, или, как его ещё называют, радиационного распада (рис. 1). Спонтанное излучение имеет чисто квантовую природу. Согласно квантовой механике атом или молекула не могут находиться в возбуждённом состоянии бесконечно долго. Возбуждённое состояние распадается с конечной скоростью, определяемой вероятностью этого перехода в единицу времени , испуская при этом квант света с энергией hn0=e2-e1 А(2)®А(1)+ hn0 (- коэффициент Эйнштейна для спонтанных переходов). Изменение концентрации частиц N2 на верхнем уровне в результате спонтанных переходов описывается выражением . Кванты света, родившиеся в результате спонтанных переходов обладают одинаковой энергией но никоим образом не связаны между собой. Направления распространения этих квантов в пространстве равновероятны. Так как рождение кванта может с равной вероятностью произойти в любой момент времени, электромагнитные волны, соответствующие этим квантам, не связаны между собой по фазе и имеют произвольную поляризацию.

В отличие от спонтанных переходов, способных происходить в изолированной частице, безизлучательные переходы возможны только при наличии взаимодействия частицы А с другой частицей или системой частиц В. В результате такого взаимодействия частица переходит из состояния 1 в состояние 2 или наоборот без излучения кванта света и без его участия. Процесс столкновительного возбуждения (рис.2) требует затраты кинетической энергии и протекает по схеме А(1)+В®А(2)+В. Процесс столкновительной релаксации на (рис.3) наоборот сопровождается переходом энергии в поступательную энергию взаимодействующих частиц либо тратится на возбуждение частицы В. Этот переход происходит по схеме A(2)+B®A(1)+B+. Индуцированные, или, как их иногда называют, вынужденные переходы в соответствии с гипотезой А. Эйнштейна могут происходить только при взаимодействии частицы А с резонансными квантами, удовлетворяющими условию hn0=e2-e1 т.е вероятность индуцированных переходов отлична от нуля лишь во внешнем электромагнитном поле с резонансной частотой n0. А. Эйнштейн предположил, что при наличии поля резонансной частоты помимо переходов квантовой системы из состояния 1 в состояние 2, что соответствует резонансному поглощению квантов, протекающему по схеме А(1)+hn0®A(2) (рис.4) возможны переходы по схеме А(2)+hn0®А(1)+2hn0 (рис.5). Данный процесс индуцирования или вынужденного излучения и служит основой квантовой электроники.

Однако энергия возбуждённых состояний не является фиксированной величиной даже в случае изолированной частицы. Согласно принципу неопределённости Гейзенберга неточность в определении энергии системы и времени её существования должна удовлетворять соотношению: . Поскольку ~t0 то неопределённость энергии возбуждённого состояния составляет . Такое энергетическое размытие уровней приводит к неопределённости частоты излучаемого кванта . Данное уширение частоты излучения называется естественная ширина линии и является минимально возможной. Естественная ширина линии резко растёт с ростом n (~n3) и становится заметной в коротковолновой части спектра. Для основного перехода молекулы СО2 лазера t0»5 сек и ширина n0»3*10-2 Гц. Однако обычно ширина линии излучения определяется не спонтанным излучением а релаксационными безизлучательными переходами, происходящими при взаимодействии возбуждённой частицы с другими частицами. Любой релаксационный процесс приводит к сокращению времени жизни частицы в возбуждённом состоянии, а следовательно, к уширению соответствующей этому состоянию линии излучения. Релаксационное уширение происходит за счёт безизлучательных процессом при столкновении частиц и этот процесс называют столкновительное уширение. По аналогии с естественный шириной линии, принимая tcт - время жизни частицы в возбуждённом состоянии столкновительное уширенение определяется как . Время жизни частицы определяется через сечение этих процессов tстКак правило возбуждённая частица взаимодействует с различными частицами и в общем случае tст, где суммирование проводится по всем видам взаимодействующих частиц. Столкновительное и естественное уширение вызвано одной той же причиной – конечным временем жизни частицы в возбуждённом состоянии. Форма линии уширения в обоих случаях определяется особенностью вероятностных процессов и поэтому одинакова. Она имеет так называемый лоренцев контур, описываемый форм-фактором . Выражение нормировано на единицу: . Уширение линии, связанное с конечностью времени жизни возбуждённого состояния, принято называть однородным. В случае однородного уширения каждая возбуждённая частица при переходе излучает линию с полной шириной , спектральной формой и поглощает кванты с частотой, лежащей в пределах контура . При однородном уширении форма линии описывает спектральные характеристики каждой частицы и всех частиц в целом. Но конечное время жизни частиц не является единственной причиной уширения линий. Излучающие частицы находятся, как правило, в тепловом движении. В соответствии с эффектом Доплера частота, испускаемая движущимся источником колебаний, претерпевает смещение, пропорциональное скорости движения излучателя V. Смещение частоты зависит также от угла j между направлением движения и линией, соединяющей излучатель с приёмником и составляет . Так как излучающие частицы движутся с различными скоростями и в различных направлениях, то частотные сдвиги излучаемых ими линий различны. Поэтому даже в случае отсутствия столкновений неподвижный спектральный прибор будет регистрировать множество естественно уширенных линий, различно смещённых относительно частоты n0. Суперпозиция этих смещённых линий и даёт наблюдаемый профиль уширённой линии. Это так называемое доплеровское уширение линии является неоднородным. Каждая частица в описанной ситуации может излучать линию лишь в узком, определяемом естественным уширением, спектральном диапазоне, сдвинутом относительно n0 на конкретную величину, однозначно связанную со скоростью и направлением движения этой частицы. Естественно, что и поглощать излучение с фиксированной частотой смогут только те частицы, доплеровский сдвиг которых соответствует этой частоте. При максвелловском распределении излучающих частиц по скоростям где - средняя тепловая скорость; m - масса частицы. При этом линия излучения имеет гауссов профиль, описываемый форм-фактором . Аналогично с выражение нормировано на единицу .

В общем случае полная ширина линии излучения определяется всеми механизмами уширения. Однако в реальной ситуации чаще всего преобладающим является один. Это вызвано различным характером зависимости и от внешних условий. Так, например, в случае газовой излучающей среды линейно растёт с концентрацией частиц, а зависит только от температуры. Поэтому при малых давлениях уширение будет определяться доплеровским эффектом, а при больших - столкновениями. Спектральное распределение излучаемой линии имеет вид симметричной резонансной кривой (рис.6) с максимумом на частоте n=n0, спадающей до уровня половины максимальной интенсивности при частотах

 
 

. Наличие уширения энергетических уровней и излучаемых линий, не влияя на интегральную частоту вынужденных переходов, приводит к уменьшению вероятности переходов с конкретной длиной волны. Т.к. линия излучения имеет спектральную форму q(n), то вероятность спонтанного излучения с заданной частотой будет определяться полной вероятностью соответствующих переходов А12 и видом форм-фактора q(n) т.е. Wсп(n)=А21*q(n) где Wсп(n)- вероятность спонтанного излучения. Вероятности спонтанного и вынужденных переходов связаны между собой, поэтому вероятность индуцированных излучения с заданной частотой W21(n) также зависит от n: W21(n)=B21*q(n)*sV, B21 – коэффициент Эйнштейна для индуцированного излучения, – спектральная объёмная плотность излучения. Интегральная вероятность индуцированного излучения W21 при этом удовлетворяет условию . Для лоренцева вида линии форм-фактора такое интегрирование даёт , для гауссова , , - объёмная плотность излучения, d - дельта-функция. Сечение вынужденного фотоперехода для столкновительного уширения имеет вид: , для доплеровской формы линии , g1 – статистический вес уровня. Сечение вынужденного излучения s21=s0*g1, вынужденного поглощения s12=s0*g2. Процессы индуцированного излучения сопровождаются усилением электромагнитных волн. Пусть через среду, в которой частицы могут находиться в состояниях 1 и 2 с энергиями возбуждения e1 и e2 проходит поток монохроматического излучения удовлетворяющего соотношению hn0=e2-e1. Пусть плотность частиц в этих состояниях N1 и N2. Уравнение баланса плотности фотонов в пучке имеет вид: где np – объёмная концентрация фотонов. . Величину называют коэффициентом активной среды. Интенсивность света будет усиливается по мере прохождения через среду с К>0. В противном случае при К<0 будет иметь место ослабление интенсивности изучения. Знак К определяется знаком выражения (N2*g1-N1*g2), называемого инверсией среды. Усиление среды положительно только лишь при (N2*g1-N1*g2)>0. В среде с термическим равновесием, где N1 и N2 подчиняются распределению Больцмана и где N2 всегда меньше N1, усиление света невозможно. Таким образом, усиление света может иметь место лишь при отсутствии термодинамического равновесия между уровнями 2 и 2, т.е. в неравновесной среде. Среду с N2*g1-N1*g2>0 называют средой с инверсной населённостью. Наилучшие условия резонансного излучения получаются при больших скоростях заселения и временах жизни верхнего уровня активных частиц и малых значениях этих величин для нижнего уровня.

3. Получение инверсной заселённости, состав активной среды, температурный режим, регенератор

В лазере на основе СО2 используется четырёхуровневая система получения инверсной населённости между колебательными уровнями молекул. Молекула СО2 состоит из атома углерода и двух симметрично расположенных атомов кислорода, т.е. имеет линейную структуру О-С-О. Как видно из схемы на рис. 7 атомы кислорода могут совершать симметричные (мода n1ОО) и несимметричные (асимметричные) (мода n3ОО), а также поперечные этому направлению так называемые деформационные колебания (мода n2LOO) - из-за наличия двух взаимно перпендикулярных направлений этот тип колебаний является дважды вырожденным. Употребляемые для описания состояния колебательно-возбуждённой молекулы квантовые числа n1, n2L и n3 характеризуют число квантов, соответствующих колебанию данного типа, L указывает поляризацию деформированного колебания. Лазерный квант излучается при переходе из состояния 001 в 100 (цифры обозначают колебательные квантовые числа в модах n1, n2L и n3 соответственно). Возможен также переход 001®020 с длиной волны l=9.4 мкм, но он обычно гораздо слабее. Для получения оптимальных условий в рабочую смесь СО2-лазера помимо углекислого газа добавляют азот и гелий.

 
 

Время жизни верхнего лазерного уровня СО2 относительно спонтанных переходов составляет ~0.2 с (А21»5.1 с-1). Поэтому более интенсивно верхние и нижние лазерные уровни расселяются (релаксируют) в результате безизлучательных переходов при столкновениях возбуждённой молекулы с невозбуждёнными компонентами лазерной среды по схеме на рис. 3. Однако высокая эффективность получения инверсной заселённости в газоразрядных СО2-лазерах обусловлена рядом причин. В электрическом разряде с высокой эффективностью образуются колебательно-возбуждённые молекулы N2, составляющие до 50% их общего числа. Поскольку молекула N2 состоит из двух одинаковых ядер, её дипольное излучение запрещено и она может дезактивироваться только при столкновении со стенкой или с другими молекулами. При наличии СО2 колебательная энергия N2 может быть легко передана молекулам СО2 поскольку существует близкий резонанс между колебаниями N2 и модой n3 колебаний СО2. Уровень 001 только на 18 см-1 лежит выше первого колебательного уровня азота и необходимый недостаток энергии молекулы СО2 могут получать от кинетической энергии азота. В результате энергия, затрачиваемая на возбуждение верхнего лазерного уровня и характеризуемая КПД разряда hк, для смесей СО2-N2-He может превышать 80%. При наличии азота в смеси время релаксации, запасённой верхним уровнем энергии tэ увеличивается и становится равным . При средней плотности выделяемой в положительном столбе разряда мощности <jE> заселённость верхнего лазерного уровня в отсутствии генерации будет . Создание инверсии требует малой населённости нижнего лазерного уровня. В условиях отсутствия генерации нижние уровни СО2 находятся в тепловом равновесии с основным, их относительная заселённость ~. Для поддержания стационарной генерации нижние уровни СО2 необходимо расселять. Этот процесс обеспечивается добавлением в лазерную смесь расселяющих компонент, из которых наиболее эффективен гелий. Также помимо эффективного расселения уровня 100 гелий обеспечивает хороший теплоотвод от рабочей среды за счёт теплопроводности и оказывает стабилизирующее действие на заряд, поэтому в подавляющем большинстве существующих технологических лазеров предпочтение отдаётся ему. Таким образом, эффективная работа СО2-ляазера требует трёхкомпонентной лазерной смеси. Определение состава рабочей среды лазера является сложной оптимизационной задачей, решение которой необходимо проводить в каждом конкретном случае. Для диффузионного СО2-лазера часто используется смесь СО2:N2:He в соотношении 1:1:3.

Частотный спектр генерации СО2-лазера имеет достаточно сложный вид. Причиной этого является наличие тонкой структуры колебательных уровней, обусловленной существованием ещё одной степени свободы молекулы СО2 – вращения. Из-за вращения молекулы каждый изображённый на рис. 7 колебательный уровень распадается на большое количество вращательных подуровней, характеризуемых квантовым числом j и отстоящих друг от друга на величину энергии Deвр, e001, e100, kTr. В результате интенсивного обмена энергий между вращательной и поступательной степенями свободы устанавливается больцмановское распределение частиц по вращательным состояниям, описываемое уравнением , где Nn , Nn,j – концентрации возбужденных частиц на колебательном уровне n и на его вращательных подуровнях j; = 0,38 см-1 – вращательная константа. Согласно правилам отбора в молекуле СО2 переходы между двумя различными колебательными уровнями возможны при изменении вращательного квантового числа на 1 т.е. Dj=±1. Таким образом, линия усиления рабочей среды состоит из большого числа линий, каждая из которых уширена за счёт эффекта Доплера на величину и за счёт столкновений на величину и для СО2-лазера вычисляются :

, где рi – парциальные давления компонент смеси.

Коэффициент усиления активной среды СО2-лазера существенно зависит от температуры рабочей смеси Тг. Процессы накачки лазерной смеси и генерации неизменно сопровождается нагревом газа. Температура лазерной смеси Тг в установившемся состоянии пропорциональна мощности энерговыделения в разряде, т.е. Тг~jE. В отсутствие генерации заселенность верхнего лазерного уровня также пропорциональна jE. Поэтому если время столкновительной релаксации не зависит от температуры газа и N001г, учёт возрастания с ростом Тг лишь ослабит зависимость N001г) (пунктирная линия). Заселённость нижнего лазерного уровня находится в равновесии с основным и описывается законом Больцмана N100~. В связи с этим при достижении некоторой критической температуры Тmax инверсная заселённость лазерной смеси исчезает. Максимальная
инверсия достигается при оптимальных температурах смеси Торt. Для смеси с cг»1,5*10-1 Вт/(м*К), Тстенки»300К зависимость населённости лазерных уровней от температуры показана на рис. 8. Типичные значения Тopt~400...500К, Тмах~700...800К.

Под действием электронных ударов и в результате столкновений возбуждённых молекул в тлеющем разряде в СО2-лазерах происходит частичная диссоциация углекислого газа СО2 ® СО + О. Отношение концентраций СО к СО2 может достигать ~12%, содержание О2 – 0,8%. Из-за этого при сохраняющемся энерговкладе возрастают потери на диссоциацию, возбуждение электронных состояний и возбуждение колебаний СО и О2. Поэтому населённость верхнего рабочего уровня СО2 падает и коэффициент усиления уменьшается. Поскольку ресурс работы СО2-лазера, определенный требованиями экономичности установки, оценивается несколькими сотнями часов, а существенный рост доли СО и О2 определяется минутами, необходимо включение в контур регенератора, в котором частично восстанавливается рабочая смесь. В диффузионном СО2-лазере целесообразно применение цеолита (SiO4+AlO4) в количестве 20мг, насыщенного парами H2O.

– Конец работы –

Эта тема принадлежит разделу:

Квантовое описание лазера

Введение... Из всех существующих лазеров Light Amplification by Stimulated Emission of... Сегодня известно большое количество различных конструкций газовых лазеров с ВЧ возбуждением Но в основе всего...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Квантовое описание лазера

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Резонатор
Резонатор является оптической системой, позволяющей сформировать стоячую электромагнитную волну и получить высокую интенсивность излучения, необходимую для эффективного протекания процессов вынужде

Характеристика газового разряда, ВАХ, потенциальная диаграмма
В высокочастотных разрядах ёмкостного типа (ВЧЕР) высокочастотное (ВЧ) напряжение подаётся на электроды, которые могут быть изолированы от разряда твёрдым диэлектриком или соприкасаться с разрядом.

Технические характеристики
 

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги