рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Характеристика газового разряда, ВАХ, потенциальная диаграмма

Характеристика газового разряда, ВАХ, потенциальная диаграмма - раздел Охрана труда, Квантовое описание лазера В Высокочастотных Разрядах Ёмкостного Типа (Вчер) Высокочастотное (Вч) Напряж...

В высокочастотных разрядах ёмкостного типа (ВЧЕР) высокочастотное (ВЧ) напряжение подаётся на электроды, которые могут быть изолированы от разряда твёрдым диэлектриком или соприкасаться с разрядом. В этом смысле можно условно называть ВЧЕ-разряды электродными или безэлектродными. Для диффузионного СО2-лазера ориентировочное давление рабочей среды ~20-40 торр, частота возбуждения ~10-120 МГц (основная промышленная частота f~13,6 МГц). Плазма таких разрядов, как правило, слабо ионизована, неравновесна и подобна плазме тлеющего разряда. При давлении ~20 торр частота столкновений nм примерно в 103 раз превышает частоту колебаний w=2pf, поэтому в осциллирующем поле типа Е=Еаsinwt электроны совершают дрейфовые колебания с амплитудой и скоростью смещений где nм – частота электронных столкновений. При ЕА/р~10 В/(см*торр), что характерно для неравновесной слабоионизированной плазмы молекулярных газов и промышленной частоты, амплитуда дрейфовых колебаний А»0,1 см. Она сравнительно мала по сравнению с типичными для экспериментов длинами разрядных промежутков вдоль поля L~0,5-10 см. Дрейфовые скорости и амплитуды колебаний ионов в ~102 раз меньше, так что колебательное движение ионов во многих случаях можно вообще не принимать во внимание. Однако около границ плоского промежутка электронный газ, совершая качания относительно “неподвижных” ионов, периодически обнажает положительные заряды. Это является первопричиной появления приэлектродных слоёв пространственного разряда.

Допустим, что электроды оголены. Те электроны, которые в момент прохождения положения равновесия отстояли от электродов на расстояниях, меньших амплитуды колебаний, после первых же качаний “навсегда” уходят в металл. В состоянии равновесия с обеих сторон остаются слои нескомпенсированного ионного заряда, газ в целом оказывается заряженным положительно. При последующих качаниях электронный газ, если отвлечься от медленного диффузионного процесса, только касается электродов.

Экспериментально установлено, что ВЧЕР горят в одной из двух сильно различающихся форм. Внешне они отличаются характером распределения интенсивности свечения по длине промежутка, по существу – процессами в приэлектродных слоях и механизмами замыкания тока на электроды. При сильноточном разряде возникает диффузионное свечение в середине промежутка, а около электродов газ не светится. Напряжение на электродах меняется очень мало, что указывает на слабую проводимость ионизированного газа и малый разрядный ток. В слаботочном разряде сильное свечение локализуется у электродов и состоит из чередующихся слоёв, по цвету и порядку следования очень похожих на слои в катодной области тлеющего разряда постоянного тока. Напряжение на электродах после зажигания заметно падает, что говорит о значительной проводимости разряда. Эти особенности истолковываются так: в разряде со слабой проводимостью ток в приэлектродной области имеет преимущественно ёмкостной характер и является током смещения, как и до зажигания. Зажигание разряда, следовательно, не отражается на поведение электрода, который по-прежнему зарядов не испускает и не воспринимает. В хорошо проводящем сильноточном разряде на отрицательный в данный момент электрод идёт ионный ток, там происходит вторичная электронная эмиссия, и на какое-то время до смены полярности около “катода” возникает катодный слой, как в тлеющем разряде. На электроды, которые попеременно служат катодами, ток из середины промежутка замыкается теперь токами проводимости. Слаботочный разряд ещё называют a-разряд, а сильноточный g-разряд, что символизирует роль вторичной эмиссии(g-процессов). При повышении давления горящий a-разряд внезапно переходит в g-форму, происходит как бы вторичное зажигание. Факт существования двух форм ВЧЕР, их свойства, закономерности перехода из одной формы в другую при давлении 10-100 торр подверглись детальному исследованию. Было экспериментально доказано что приэлектродные слои в g-разряде обладают высокой проводимостью.

При самых малых напряжениях и токах, U в ходе наращивания тока почти не меняется. Разряд в этих условиях не заполняет площади электродов, диаметр его в межэлектродном промежутке близок к диаметру пятна на электродах, светится средняя часть промежутка. Около электродов, в слоях пространственного заряда интенсивность излучения уменьшается. Это типичный слаботочный a-разряд с непроводящими приэлектродными слоями. Распределение интенсивности свечения по длине промежутка показано на рисунке 12. При покрытии электродов диэлектриком всё останется точно так же. При наращивании тока в этой стадии, разряд расширяется в поперечном направлении, заполняя площадь электрода. Плотность тока на электроде при этом остаётся неизменной. Когда электрод полностью заполняется током и диаметр разряда вырастает до диаметра электродов, для дальнейшего увеличения тока требуется большее напряжение, как в аномальном тлеющем разряде, хотя здесь слои по-прежнему тёмные и непроводящие. Толщины их в нормальном режиме d»0,2-0,6 см. С точностью до небольшого тока насыщения ток замыкается на электрод током смещения. При достижении на электродах достаточно большого напряжения происходит резкая перестройка a-разряда, превращение его в сильноточную g-форму. На ВАХ ему соответствует скачок или излом (рис. 13). ВАХ построена при давлении 20 торр, частоте возбуждения 13,6 МГц. Излом говорит о “вторичном” зажигании разряда, перераспределяется свечение в промежутке, около каждого электрода появляются слои, похожие на слои тлеющего разряда. Постоянный потенциал пространства U0 в сильноточном режиме составляет ~150-250В, толщина приэлектродного слоя пространственного заряда становится меньше на порядок.

В поперечном ВЧЕР в соответствии со спецификой его пространственной структуры даже в слаботочном режиме горения, когда выделение энергии непосредственно в приэлектродных слоях пространственного заряда невелико, максимумы энерговыделения в плазме смещены к охлаждаемым электродам, поэтому среди всех прочих одинаковых условиях теплообмен активной среды со стенками более эффективен. По-видимому, это и является одной из причин получения больших мощностей когерентного излучения с единицы длины СО2-лазера с диффузионным охлаждением, возбуждаемого поперечным ВЧЕР по сравнению с ЛДО, возбуждаемым постоянным током.

Наиболее часто цитируемое достоинство газового лазера с поперечным ВЧ-возбуждением заключается в резком снижении (в 10¸100 раз) питающего напряжения. Но эта положительная черта не является следствием применения ВЧЕР, а возникает благодаря малой величине межэлектродного зазора d. Очевидно, что и в разрядах постоянного тока при малых d напряжение на электродах будет невелико. Специфика ВЧ-возбуждения заключается в том, что в условиях поперечного возбуждения разряда, т.е. при небольших напряжениях на электродах, малый зазор можно заполнить активной средой СО2-лазера с высоким КПД.

Таким образом, основанием для перехода к высоким частотам возбуждения СО2-лазеров и диффузионным охлаждением являются следующие две особенности слаботочного режима горения ВЧЕР.

· Концентрация заряженных частиц увеличивается с ростом f и достигает необходимых значений при частотах f>50 МГц.

· Толщина приэлектродных слоёв пространственного заряда dсл в диапазоне частот f>50 МГц составляет доли мм, что позволяет заполнить плазмой малые межэлектродные зазоры d@1,5¸3 мм.

 

– Конец работы –

Эта тема принадлежит разделу:

Квантовое описание лазера

Введение... Из всех существующих лазеров Light Amplification by Stimulated Emission of... Сегодня известно большое количество различных конструкций газовых лазеров с ВЧ возбуждением Но в основе всего...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Характеристика газового разряда, ВАХ, потенциальная диаграмма

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Квантовое описание лазера
Возбуждённая частица может перейти в менее энергетическое со

Резонатор
Резонатор является оптической системой, позволяющей сформировать стоячую электромагнитную волну и получить высокую интенсивность излучения, необходимую для эффективного протекания процессов вынужде

Технические характеристики
 

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги