рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Структура и свойства железоуглеродистых сплавов

Структура и свойства железоуглеродистых сплавов - раздел Охрана труда, МАТЕРИАЛОВЕДЕНИЕ А) Техническое Железо. Структура Технического Железа С Концентрацией У...

а) Техническое железо. Структура технического железа с концентрацией углерода 0,012 % (рис. 4.4.4) состоит из светлых полиэдрических зёрен феррита и цементита третичного, который расположен в виде светлых включений по границам зёрен феррита.

Наличие в пластичной и мягкой составляющей феррита на границах зёрен прожилок цементита третичного понижает пластичность и вязкость сплава и увеличивает его твердость до 1000 НВ.

 

 

Рис. 4.4.4. Структура технического двухфазного железа

 

Стали. В процессе охлаждения из аустенита доэвтектоидных сталей выделяется феррит (рис. 4.4.5а). Температура, при которой начинает выделяться феррит, определяется линией GS (см. рис. 4.4.1).

Выделение феррита приводит к обогащению аустенита углеродом. При 727 °С концентрация углерода в аустените достигает 0,8 %, и в этих условиях имеет место эвтектоидная реакция АS → П(Ф + Ц).

Таким образом, структура доэвтектоидных сталей при комнатной температуре состоит из феррита, выделившегося в интервале температур Аr3–Аr1 (линии GS и РS), и перлита, образовавшегося при 727 °С.

В структуре доэвтектоидной стали цементита много больше, чем в техническом железе, и это повышает твёрдость стали (см. рис. 4.4.2).

 

 

Рис. 4.4.5. Структуры сталей:
а – доэвтектоидная сталь, б – эвтектоидная сталь, в – заэвтектоидная сталь

 

Сталь с содержанием углерода 0,8 % имеет структуру перлита и называется эвтектоидной сталью. Перлит чаще всего имеет пластичное строение, при котором кристаллы цементита перемежаются с кристаллами феррита (рис. 4.4.5б). Увеличение содержания углерода повышает твердость, прочность, но снижает пластичность сплава.

Структура заэвтектоидной стали также формируется из аустенита. В интервале температур Аrст – Аr1 (линии SE и SK) из аустенита выделяется цементит вторичный, который, как правило, располагается по границам зёрен. При 727 °С концентрация углерода в аустените будет соответствовать 0,8 % и он распадается с образованием перлита.

Таким образом, структура заэвтектоидной стали при комнатной температуре – перлит и цементит вторичный (рис. 4.4.5в). Доля цементитной составляющей возросла в сравнении с предыдущими сплавами. Теперь цементит не только входит в перлит (эвтектоид), но и твёрдость стали возрастает до 3200 НВ.

Чугуны. Белый эвтектический чугун кристаллизуется при 1147 °С
(см. рис. 4.4.1, линия ЕСF) с образованием ледебурита:

Ж4,3 % С → Л(А2,14 % С + Ц6,67 % C).

Охлаждение до 727 °С приводит к уменьшению концентрации углерода в аустените до 0,8 %. При 727 °С аустенит превращается в перлит.

Таким образом, эвтектический чугун (рис. 4.4.6б) при комнатной температуре имеет структуру ледебурита, состоящего из перлита и цементита. Основной фазой в белом чугуне является цементит, и поэтому белый чугун твёрдый (6500 НВ).

 

Рис. 4.4.6. Структуры белых чугунов:
а – доэвтектический чугун, б – эвтектический чугун, в – заэвтектический чугун

 

Структура доэвтектических чугунов (рис. 4.4.6а) состоит из перлита, вторичного цементита и ледебурита, а заэвтектических чугунов
(рис. 4.4.6в) – из ледебурита и цементита, выделившегося из жидкой фазы.

Зависимость свойств серых чугунов от структуры значительно сложнее, чем стали, так как серые чугуны состоят из металлической основы и графитовых включений. Поэтому для характеристики структуры серого чугуна необходимо определить размеры, форму, распределение графита, а также структуру металлической основы (см. рис. 4.4.3).

Чем меньше графитовых включений, тем они мельче и сильнее изолированы друг от друга, тем выше прочность чугуна при одной и той же металлической основе.

 

 

Рис. 4.4.7. Серый перлитоферритный чугун

 

Металлическая основа серого чугуна СЧ 15 с содержанием углерода
3,1–3,6 % (рис. 4.4.7) состоит из феррита (белая составляющая) и перлита (тёмная составляющая). Грубо- или среднепластинчатые графитовые включения в виде тёмных полос разрезают металлическую основу. Поэтому такой серый чугун имеет низкую прочность при работе на растяжение и практически нулевую пластичность: σВ = 150 МПа, δ = 0,5 %. Твердость определяется строением металлической основы и соответствует 1430–2290 НВ.

 

 

Рис. 4.4.8. Высокопрочный перлитоферритный чугун

 

Высокопрочный чугун, в отличие от серого, имеет включения графита шаровидной формы, а не пластинчатой, и, как следствие, более высокие механические свойства. Высокопрочные чугуны обладают:

· высоким пределом текучести (σТ = 300–420 МПа), что выше предела текучести стальных отливок;

· высокой ударной вязкостью и усталостной прочностью (до
σ−1 = 230–250 МПА при перлитной основе).

Структура ВЧ 45 (рис. 4.4.8) с содержанием углерода 3,1–3,2 % состоит из феррита (светлая составляющая), перлита (тёмная составляющая) и графита шаровидной формы (тёмные округлые включения). Проч- ность при растяжении σВ = 450 МПа, относительное удлинение δ = 5 %.
Твёрдость определяется металлической основой и соответствует
1400–2250 НВ.

Ковкий чугун имеет графит хлопьевидной формы. Это обеспечивает хорошие механические свойства. Структура КЧ 35–10 с содержанием
2,4–2,8 % С состоит из светлых зёрен феррита и хлопьевидного графита (рис. 4.4.9).

Ферритная металлическая основа обеспечивает невысокую твёрдость (1490–1630 НВ). Прочность чугуна σВ = 350 МПа, относительное удлинение δ = 10 %.

 

 

Рис. 4.4.9. Ковкий ферритный чугун

– Конец работы –

Эта тема принадлежит разделу:

МАТЕРИАЛОВЕДЕНИЕ

Государственное образовательное учреждение... высшего профессионального образования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Структура и свойства железоуглеродистых сплавов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Диаграмма состояния для сплавов, образующих химические соединения.
Такая диаграмма получается (рис. 2.2д), когда сплавляемые компоненты образуют устойчивое химическое соединение АnВm, не диссоциирующее при нагреве вплоть до температуры

Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением.
Диаграмма состояния сплавов, у которых высокотемпературные модификации компонентов γ обладают полной взаимной растворимостью, а низкотемпературные αF, βN

Макроанализ
Макроструктура – строение металла, видимое без увеличения или при небольшом увеличении (до 10–30 раз) с помощью лупы. При макроанализе можно одновременно наблюдать большую поверхность

Микроанализ
Микроскопический анализ (микроанализ) заключается в исследовании структуры ме­талла при больших увеличениях (более 30 крат) и применяется: · для определения количества и типа структ

Приготовление микрошлифа
Образец металла, специально приготовленный для исследования его структуры под микроскопом, называется микрошлифом. Для микроанализа из исследуемого материала вырезают образец, поверхность ег

Микроскопы металлографические
Для исследования микроструктуры металлов используются металлографические микроскопы. Металлографический микроскоп позволяет рассматривать непрозрачные тела в отраженном свете. В этом основно

Проведение испытаний
Для определения средней величины зерна существует несколько методов, среди которых наиболее распространенным является метод площадей. Измерение этим методом величины зерна производится на пр

Подготовка микроскопа к визуальному наблюдению
· установить объектив и окуляр соответственно выбранному увеличению; · винтами установить отверстие съёмной шайбы над объективом; · над отверстием съемной шайбы установить микрошл

Определение цены деления
Для определения цены деления окуляра-микрометра необходимо: · подготовить микроскоп к наблюдению; · установить объект-микрометр на столик микроскопа таким образом, чтобы стекло со

Определение величины зерна стали
Для определения величины (балла) зерна необходимо (рис. 4.1.8): · микрошлиф поместить на столик микроскопа; · добиться чёткого изображения структуры; · просмотреть нескол

Отчет по лабораторной работе
«Микроскопический анализ металлов» 1. Цель работы. 2. Основные определения. Макроструктура   Мик

Теоретические основы процесса кристаллизации металлов
Процесс образования кристаллов называется кристаллизацией. Визуальное изучение кристаллизации металлов сопряжено с техническими трудностями. Поскольку законы кристаллизации растворов солей и

Кристаллизация солей
В данной работе студенты изучают процесс кристаллизации четырёх солей: нитрата свинца Рb(NO3)2, хлорида аммония NH4Cl, дихромата калия К2

Порядок выполнения работы
1. Глядя в окуляр, вращать зеркало микроскопа, добиваясь яркого освещения (получить светлое поле). 2. Предметное стекло с нанесенной на него каплей соли установить на предметный столик так

Отчет по лабораторной работе
«Изучение процесса кристаллизации» 1. Цель работы. 2. Изменение свободной энергии жидкости и твердого тела в зависимости от температуры. С

Теоретические основы
У кристаллических тел при переходе из одного состояния в другое, при протекании фазовых превращений выделяется или поглощается теплота и физические свойства при этом меняются скачкообразно.

Построение диаграммы состояния
В основе построения диаграмм состояний лежит определение критических точек при охлаждении жидкого сплава (чистого металла) до нормальной температуры. При этом пользуются методом термического ана

Порядок выполнения работы
1. Перед началом измерений сплав находится в жидком состоянии. Когда печь выключают, сплав начинает охлаждаться. С момента начала охлаждения включить секундомер и фиксировать показания милливольтме

Отчет по лабораторной работе
«Построение диаграммы состояния «Свинец – олово» термическим методом» 1. Цель работы. 2. Схема установки проведения эксперимента. &nb

Влияние концентрации углерода на свойства железоуглеродистых сплавов
По мере повышения концентрации углерода в стали и чугуне изменяются структура и их механические свойства. Прочность горячекатаной стали в нормализованном состоянии с увеличением содержания углерода

Порядок выполнения работы
1. Вычертить диаграмму «Fe−Fe3C» с указанием температур превращений и концентраций углерода для характерных точек. 2. Указать фазы и структурные составляющие в разл

Отчет по лабораторной работе
«Микроструктура железоуглеродистых сплавов в равновесном состоянии» 1. Цель работы. 2. Диаграмма состояния сплавов «Железо – цементит».  

Основные виды термической обработки стали и их назначение
Отжиг – нагрев стали выше линии А3 (рис. 4.5.1) доэвтектоидной или А1 заэвтектоидной на 30–50 °С, выдержка при этой температуре и последующее охлаждение в

Процессы нагрева стали
Температура нагрева определяется положением критических точек А1 и А3 на диаграмме «Железо – цементит» (рис. 4.5.1а). Для правильного выполнения термической обра

Процессы охлаждения стали
Охлаждающая среда обеспечивает определённую скорость охлаждения и назначается исходя из требуемых структуры и свойств стали. Получаемую структуру можно определить при наложении векторов скоростей о

Превращение аустенита при отжиге
При отжиге скорость охлаждения V1 ≈ 0,03 ºС/с, т. е. менее VКР, аустенит превращается в феррит и цементит: Feγ(C)→ Fe

Превращение аустенита при нормализации
В результате нормализации скорость охлаждения V2 ≈ 30 °С/с также меньше критической. Превращение диффузионное. Образующаяся структура называется сорбит – дисперсная (

Превращение аустенита при закалке
При охлаждении в воду скорость охлаждения V4 ≈ 600 °С/с, т. е. превышает критическую. Аустенит пре­вращается в мартенсит закалки: Feγ(C)→ Fe

Влияние температуры отпуска на структуру стали
В процессе отпуска неравновесное состояние – мартенсит закалки – претерпевает диффузионное превращение и переходит в более устойчивое состояние. Температура нагрева при отпуске зависит от назначени

Порядок выполнения работы
1. Получить образцы конструкционной стали 40Х. 2. Назначить режимы термической обработки: · закалку с недогревом (Тз = 710 °С, охлаждение в воде); · зак

Отчет по лабораторной работе
«Термическая обработка стали» 1. Цель работы. Химической обработке подвергались образцы из стали марки _______ Химический состав ________________________

Влияние скорости охлаждения на превращение аустенита
В зависимости от скорости охлаждения превращение аустенита может быть диффузионным и бездиффузионным. Критерием превращения является критическая скорость закалки VКР – наименьшая

Влияние температуры отпуска на превращение мартенсита закалки
Для повышения вязкости закалённых сталей выполняется дополнительная термическая операция, называемая отпуском. Это нагрев стали до температур ниже линии А1, при которых неравновес

Влияние температуры отжига на структуру и свойства стали
  Рис. 4.6.3. Микроструктура стали 45 до отжига (а) и после от

Влияние температуры закалки на структуру и свойства стали
Микрошлиф 4 – сталь У8А после закалки (температура нагрева 780 °С). При правильном нагреве образуется мелкоигольчатый мартенсит закалки (рис. 4.6.6а), поскольку длина игл мартенсита L о

Влияние температуры отпуска на структуру и свойства стали
Микрошлиф 6 – сталь У8А после закалки и низкого отпуска. Низкий отпуск практически не изменяет вид мартенсита. Игольчатость его строения сохраняется, но несколько увеличивается травимость

Библиографический список
1. Материаловедение: учебник для студентов вузов / В. С. Кушнер, А. Г. Верещака, Д. А. Негров, О. Ю. Бургонова. – Омск : Изд-во ОмГТУ, 2008. – 224 с. 2. Материаловедение: учеб. для ст

ПриложениЯ
п.1. ПРИМЕР ОформлениЯ титульного листа домашнеЙ РАБОТЫ  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги