Современные методы очистки выбросов

Современные методы очистки выбросов. Промышленные абсорбционные установки. При очистке газовых потоков от вредных веществ абсорбционные процессы применяются в тех случаях, когда концентрация абсорбируемого вещества в газовом потоке довольно высокая и когда газовый поток обладает большим объемом.

Примерами абсорбционной очистки газовых потоков от вредных примесей являются очистка отходящих газов металлургических предприятий от диоксида серы, хвостовых газов заводов по производству азотной кислоты от оксидов азота, дымовых газов тепловых электростанций от диоксида серы и оксидов азота, природного газа от сероводорода. Процессы абсорбции наиболее эффективно происходят при низких температурах.

При этом вредные примеси газового потока поглощаются абсорбентом и взаимодействуют с его активным компонентом, образуя химические соединения, легко разлагающиеся при нагревании. Следовательно, нагревание приводит к противоположному процессу выделению поглощенного газа из абсорбента. Выделение примеси из насыщенного абсорбента путем его нагрева или каким-то другим способом (например уменьшением давления) называется десорбцией. Возможность выделения поглощенного газа из абсорбента путем повышения температуры позволяет использовать один и тот же абсорбент многократно в замкнутом цикле.

При этом абсорбент после выделения из него поглощенного газа называется регенерированным абсорбентом. В нем остается очень малое количество поглощенного газа, поэтому регенерированный абсорбент обладает практически такой же поглотительной способностью, как и свежий абсорбент. Абсорбция представляет собой наиболее распространенный способ очистки газовых потоков. Процесс абсорбции проводится в вертикальных аппаратах абсорберах, которые наполняются так называемыми насадками, позволяющими создавать развитую поверхность контакта абсорбента с газовым потоком, движущимся в противоположном направлении.

Адсорбционные установки, применяемые в промышленности. Адсорбционные процессы осуществляются в горизонтальных или вертикальных аппаратах-адсорберах, в которых располагается слой адсорбента толщиной не более 0,8 м. Такие адсорберы находят широкое применение при рекуперации летучих растворителей и паров других легколетучих органических веществ.

Цеолиты используются при осушке газовых потоков и для улавливания химически активных газов, таких как диоксид азота. Молекулы вредных газов и паров в порах адсорбента под действием адсорбционных сил конденсируются и переходят в жидкое состояние подобно конденсации паров воды на холодной поверхности. Это приводит к заполнению микропор и насыщению адсорбента. В момент насыщения адсорбент имеет максимальную адсорбционную емкость.

Для активированных углей адсорбционная емкость составляет 12 - 14% от массы адсорбента, для остальных адсорбентов от 6 до 8%. Это означает, что 100 кг активированного угля способно поглотить 12 - 14 кг вредных паров или газов, тогда как такое же количество других адсорбентов, например, силикагелей, алюмогелей и цеолитов, не более 6 - 8 кг. После насыщения адсорбента заполнения пор поглощаемым веществом его продувают насыщенным водяным паром или горячим воздухом. При этом конденсированное на поверхности пор вещество снова переходит в газообразное состояние и вместе с продувочным паром или воздухом удаляется из адсорбера.

Такой процесс называется десорбцией. Выделение десорбированного газа из смеси с водяным паром происходит в специальных аппаратах-холодильниках, где водяной пар превращается в конденсат. Если при этом происходит также конденсация десорбированного газа или пара органического вещества, не смешивающегося с водой, то их разделяют в сепараторах путем расслаивания. Мембранные процессы очистки газовых потоков В последние годы для очистки газовых потоков от примесей начали использовать мембранные процессы.

Мембраны представляют собой тонкие полимерные пленки (толщина несколько десятков мкм), полученные на основе поливинилхлорида, полиэтилена, полиамида и других полимеров. Мембранные процессы основаны на селективном (выборочном) разделении газов, различающихся по величине объема молекул. Такие мембраны имеют поры, соизмеримые с размерами молекул газов, проходящих через мембрану. Газ, который проходит через мембрану, называется фильтратом, а смесь газов, остающаяся над мембраной, называется концентратом.

В отличие от механического фильтрования мембранные процессы зависят от многих физико-химических факторов, таких как интенсивность межмолекулярных взаимодействий между мембраной и молекулами фильтрата, скорость удаления концентрата над мембраной, разность концентраций примесей в концентрате и фильтрате. В промышленности мембранное разделение газов применяется для очистки газообразного водорода от примесей в производстве аммиака, при очистке газовых потоков от диоксида углерода, сероводорода и диоксида серы. Перспективы применения мембранного разделения газовых потоков в народном хозяйстве определяются прежде всего простотой аппаратурного оформления процесса, отсутствием реагентов, длительной работой газоразделительных мембран (5-10 лет), экономичностью и возможностью полной автоматизации мембранных установок. (Мухутдинова А.А 1998.) 2.