Сооружения биологической очистки сточных вод НПЗ

Сооружения биологической очистки сточных вод НПЗ. Основными сооружениями биохимической очистки на отечественных НПЗ служат аэротенки и вторичные отстойники. Как правило, на очистных сооружениях НПЗ применяют аэротенки с рассредоточенным впуском сточных вод и аэротенки смесители.

Обычные аэротенки вытеснители чаще всего применяют на второй ступени очистки [3]. Биологические фильтры практически не нашли применения для очистки нефтесодержащих сточных вод на отечественных предприятиях, так как опыт их эксплуатации на одном из НПЗ показал, что эффект очистки в них значительно ниже, чем в аэротенках. В настоящее время биологические фильтры используют только на двух нефтеперерабатывающих заводах как вторую ступень очистки. Биологические пруды на отечественных заводах применяют только в качестве сооружений для доочистки биохимически очищенных сточных вод НПЗ [11]. Аэротенки Аэротенк представляет собой аппарат с постоянно протекающей сточной водой, во всей толще которой развиваются аэробные микроорганизмы, потребляющие субстрат, т.е. "загрязнение" этой сточной воды. Биологическая очистка сточных вод в аэротенках происходит в результате жизнедеятельности микроорганизмов активного ила. Сточная вода непрерывно перемешивается и аэрируется до насыщения кислородом воздуха.

Активный ил представляет собой суспензию микроорганизмов, способную к флокуляции.

Механизм изъятия органических веществ из сточной воды и их потребление микроорганизмами может быть представлено тремя этапами [1]: 1 этап - массопередача органического вещества из жидкости к поверхности клетки. Скорость протекания этого процесса определяется законами молекулярной и конвективной диффузии веществ и зависит от гидродинамических условий в аэротенке. Оптимальные условия для подведения загрязнений и кислорода создаются посредством эффективного и постоянного перемешивания содержимого аэротенка.

Первый этап протекает быстрее последующего процесса биохимического окисления загрязнений. 2 этап - диффузия через полупроницаемые мембраны в клетке или самого вещества или продуктов распада этого вещества. Большая часть вещества поступает внутрь клеток при помощи специфического белка-переносчика, который образует комплекс, диффундирующий через мембрану. 3 этап - метаболизм органического вещества с выделением энергии и образованием нового клеточного вещества.

Превращение органических соединений носит ферментативный характер. Определяющими процессами для технологического оформления очистки воды являются скорости изъятия загрязнений и скорость разложения этих загрязнений. Активный ил в контакте с загрязнённой жидкостью в условиях аэрации проходит следующие фазы развития [1]: 1. Лаг-фазу I, или фазу адаптации ила к составу сточной воды. Прироста биомассы практически не происхдит. 2. Фазу экспоненциального роста II, в которой избыток питательных веществ и отсутствие продуктов обмена способствуют максимальной скорости размножения клеток. 3. Фазу замедленного роста III, в которой скорость роста биомассы начинает сдерживаться недостатками питания и накоплением продуктов метаболизма. 4. Фазу нулевого роста IV, в которой наблюдается практически стационарное состояние в количестве биомассы. 5. Фазу эндогенного дыхания (или фазу самоокисления) V, в которой из-за недостатка питания начинаются отмирание и распад клеток, ведущие к снижению общего количества биомассы.

Аэротенки могут быть классифицированы по гидродинамическому режиму их работы: I) аэротенки идеального вытеснения; 2) аэротенки идеального смешения; 3) аэротенки промежуточного типа Гидродинамический режим работы аэротенков оказывает принципиальное влияние на условия культивирования микроорганизмов а следовательно, на эффективность и экономичность биологической очистки сточных вод. Конструкции аэротенков могут быть различными и зависят от системы аэрации, способа распределения потоков сточных вод и возвратного ила и т.д. Имеются также конструкции аэротенков, совмещенных с отстойниками и фильтрами, с регенерацией активного ила и без нее. Существует также классификация аэротенков по величине "нагрузки" на активный ил: высоконагружаемые (аэротенки на неполную очистку), обычные и низконагружаемые (аэротенки продленной аэрации). Большое значение в конструкции аэротенков имеет система аэрации.

Применяются аэротенки с пневматической, пневмомеханической, механической и эжекционной системами аэрации.

Аэрационные системы предназначены для подачи и распределения кислорода или воздуха в аэротенке, а также поддержания активного ила во взвешенном состоянии. Аэротенки-смесители (аэротенки полного смешения) характеризуются равномерной подачей по длине сооружения исходной воды и активного ила и равномерным отводом иловой смеси.

Полное смешение в них сточных вод с иловой смесью обеспечивает выравнивание концентраций ила и скоростей процесса биохимического окисления, поэтому аэротенки-смесители более приспособлены для очистки концентрированных производственных сточных вод (БПКполное до 1000 мг/л) при резких колебаниях их расхода, состава и количества загрязнений.

Рис.2. Аэротенк-смеситель Аэротенки-вытеснители. В отличие от аэротенков других типов (аэротенков-смесителей и аэротенков промежуточного типа), аэротенки-вытеснители представляют собой сооружения, в которых очищаемая сточная вода постепенно перемещается от места впуска к месту ее выпуска.

При этом практически не происходит активного перемешивания поступающей сточной воды с ранее поступившей. Процессы, протекающие в этих сооружениях, характеризуются переменной скоростью реакции, поскольку концентрация органических загрязнений уменьшается по ходу движения воды. Аэротенки-вытеснители весьма чувствительны к изменению концентрации органических веществ в поступающей воде, особенно к залповым поступлениям со сточными водами токсических веществ, поэтому такие сооружения рекомендуется применять для очистки городских и близких по составу к бытовым промышленных сточных вод. Рис.3. Аэротенк-вытеснитель При отсутствии резких колебаний расхода сточных вод и содержания токсических веществ вместо аэротенков-смесителей предпочтительнее применять аэротенки-вытеснителн, которые отличаются меньшим объемом и простотой конструкции.

Разновидностью аэротенков-вытеснителей является секционированный аэротенк, в котором для предотвращения возвратного движения воды коридоры сооружения разделены поперечными перегородками на пять-шесть последовательно проточных секций (ячеек). Секционирование оказывается целесообразным при длине коридоров в аэротенках менее 60 80 м. Коридорный аэротенк работает практически как вытеснитель при отношении расстояния от впуска очищаемой воды до конца последнего коридора к ширине коридора не менее 50 : 1. При ширине коридора 6 или 9 м минимальное расстояние от впуска сточной воды до конца последнего коридора должно составлять соответственно 300 и 450 м. При использовании аэротенков с коридорами меньшей длины наблюдается процесс значительного осевого смешения, которое искажает эффект вытеснения.

Для недопущения продольного перемешивания и приближения процесса к режиму вытеснения в этом случае необходимо предусматривать секционирование аэротенков.

Секционирование может быть осуществлено путем установки в коридорах аэротенков легких вертикальных перегородок с отверстиями в нижней части.

Скорость движения иловой смеси в отверстиях перегородок принимается равной не менее 0,2 м/с. Для исключения отрицательного влияния залповых поступлений концентрированных сточных вод первая секция аэротенка должна иметь больший объем. Конструктивно такая секция оформляется как аэротенк-смеситель, что достигается рассредоточенным впуском в нее сточных вод. Расстояние между выпусками следует принимать не менее ширины коридора.

Размер выпускных отверстий в распределительных лотках должен быть рассчитан на пропуск 50 % расхода стоков, поступающих в секцию. Конструкция аэротенков-вытеснителей (в том числе и секционированных) должна обеспечивать работу по схеме с регенерацией активного ила Регенерация ила принимается равной 25-50 % объема сооружений Известные конструкции секционированного аэротенка с последовательным перетеканием очищаемой воды имеют недостатки, которые препятствуют их широкому использованию.

Основной недостаток - неудовлетворительные условия адаптации активного ила в связи с различными режимами работы ячеек. Аэротенки с рассредоточенным впуском сточной воды занимают промежуточное положение между смесителями и вытеснителями; их применяют для очистки смесей промышленных и городских сточных вод. Рис. 4. Аэротенк с рассредоточенным впуском сточной жидкости Аэротенки можно компоновать с отдельно стоящими вторичными отстойниками или объединять в блок при прямоугольной форме обоих сооружений в плане.

Наиболее компактны комбинированные сооружения аэротенки-отстойники. За рубежом этот тип сооружения круглой в плане формы с механическими аэраторами получил название аэроакселатора. Совмещение аэротенка с отстойником позволяет увеличить рециркуляцию иловой смеси без применения специальных насосных станций, улучшить кислородный режим в отстойнике и повысить дозу ила до 3 5 г/л, соответственно увеличив окислительную мощность сооружения.

Разновидность аэротенка-отстойника аэроакселатор, предложенный НИКТИ ГХ, представляет собой круглое в плане сооружение. Осветленные сточные воды поступают в нижнюю часть зоны аэрации, куда пневматическим или пневмомеханическим способом подается воздух, что обеспечивает процесс биохимического окисления, а также создает циркуляционное движение жидкости в этой зоне и подсос иловой смеси из циркуляционной зоны отстойника. Из зоны аэрации иловая смесь через затопленные регулируемые переливные окна поступает в воздухоотделитель и далее в циркуляционную зону отстойника.

Значительная часть иловой смеси через щель возвращается в зону аэрации, а отводимые очищенные сточные воды через слой взвешенного осадка поступают в отстойную зону. Вторичные отстойники Вторичные отстойники являются составной частью сооружений биологической очистки, располагаются в технологической схеме непосредственно после биоокислителей и служат для отделения активного ила от биологически очищенной воды, выходящей из аэротенков, или для задержания биологической пленки, поступающей с водой из биофильтров.

Эффективность работы вторичных отстойников определяет конечный эффект очистки воды от взвешенных веществ [22]. Для технологических схем биологической очистки сточных вод в аэротенках вторичные отстойники в какой-то степени определяют также объем аэрационных сооружений, зависящий от концентрации возвратного ила и степени его рециркуляции, способности отстойников эффективно разделять высококонцентрированные иловые смеси.

Иловая смесь, поступающая из аэротенков во вторичные отстойники, представляет собой гетерогенную (многофазную) систему, в которой дисперсионной средой служит биологически очищенная сточная вода, а основным компонентом дисперсной фазы являются хлопки активного ила, сформированные в виде сложной трехуровневой клеточной структуры, окруженной экзоклеточным веществом биополимерного состава. Важнейшим свойством иловой смеси как дисперсной системы является ее агрегативная неустойчивость, которая выражается в изменении диаметра хлопков активного ила в пределах 20-300 мкм в зависимости от интенсивности турбулентного перемешивания. При снижении интенсивности турбулентного перемешивания и последующем отстаивании иловой смеси в результате биофлокуляции происходит агрегирование хлопков активного ила в хлопья размером 1-5 мм, которые осаждаются под воздействием силы тяжести.

Осаждение хлопьев активного ила (при его концентрации в иловой смеси более 0,5-1 г/л) происходит с образованием видимой границы раздела фаз между осветляемой водой и илом. Гидродинамический режим работы вторичных отстойников формируется в результате совокупного воздействия следующих гидродинамических условий: * режим впуска иловой смеси в сооружение, оцениваемый скоростью ее входа и определяющий интенсивность взаимодействия входящего потока с потоками оседающего ила и осветляемой воды; * процесс сбора осветленной воды, определяемый в основном скоростью подхода воды к сборному лотку и его удаленностью от уровня осевшего ила; * режим отсоса осевшего ила, определяемый скоростью входа ила в сосуны илососа, уровнем стояния ила и удаленностью сосунов от сборного лотка. Вторичные отстойники бывают вертикальными, горизонтальными и радиальными.

Для очистных станций пропускной способности до 20000 м3/сут применяются вертикальные вторичные отстойники, для очистных станция средней и большой пропускной способности (более 15000 м3/сут) горизонтальные и радиальные. 1.3.2