рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Органолептические показатели питьевой воды

Органолептические показатели питьевой воды - раздел Экология, ЭКОЛОГИЯ ГОРОДСКОЙ СРЕДЫ   Показатель Единица Измерения ...

 

Показатель Единица измерения Норматив, не более
Запах Баллы
Привкус Баллы
Цветность Градусы 20 (35)
Мутность Единицы мутности: - по формазину, ЕМФ - коалину, мг/л   2,6 (3,5) 1,5 (2)

В процессе водоподготовки и водопользования производственный контроль за качеством питьевой воды производится по следующим показателям:

· микробиологическим и паразитологическим,

· органолептическим,

· радиологическим,

· обобщенным остаточным количествам реагентов,

· химическим веществам, выбранным для постоянного контроля.

Выбор веществ, подлежащих постоянному производственному контролю, проводится после оценки химического состава воды источника водоснабжения, а также технологии производства питьевой воды в системе водоснабжения.

Градостроительные методы охраны вод хозяйственно-питьевого назначениявключают организацию зон санитарной охраны (ЗСО) источников водоснабжения и водопроводов. В соответствии с СанПиН 2.1.4.1110-02 [79] территория ЗСО подразделяется на три пояса. Первый пояс (строгого режима) предназначен для защиты места водозабора и водозаборных сооружений от случайного или умышленного загрязнения и повреждения. На территории первого пояса расположен водозабор, площадки всех водопроводных сооружений и водопроводящий канал. Второй и третий пояса (пояса ограничений) ЗСО – это территории, предназначенные для предупреждения загрязнения источников водоснабжения. Границы поясов ЗСО установлены СанПиНом.

Границы ЗСО подземного водозабора первого пояса располагаются на расстоянии от него:

· не менее 30 м при использовании защищенных подземных вод;

· не менее 50 м при использовании недостаточно защищенных подземных вод и при искусственном пополнении запасов подземных вод.

Границы 2-го и 3-го поясов определяются гидродинамическими расчетами. Основным расчетным параметром для определения границы 2-го пояса является время продвижения микробного загрязнения с потоком подземных вод к водозабору. Для недостаточно защищенных подземных вод оно составляет 400 суток в пределах территории I, II и III климатических районов. Для защищенных подземных вод – 200 суток в пределах территории I и II районов и 100 суток в пределах III района.

Граница 3-го пояса предназначена для защиты водоносного пласта от химических загрязнений. Основным расчетным параметром является время движения химического загрязнения к водозабору, оно принимается как срок эксплуатации водозабора 25…50 лет. Расчеты проводятся по методикам, согласованным с Государственной санитарно-эпидемиологической службой РФ.

Границы ЗСО поверхностного источника первого пояса устанавливаются:

· для водотоков: вверх по течению – не менее 200 м от водозабора; вниз по течению – не менее 100 м от водозабора; по прилегающему к водозабору берегу – не менее 100 м от линии уреза воды летне-осенней межени; в направлении к противоположному берегу при ширине реки или канала менее 100 м – вся акватория и противоположный берег шириной 50 м от линии уреза воды, при ширине реки или канала более 100 м – полоса акватории шириной не менее 100 м;

· для водоемов (озера, водохранилища) во всех направлениях по акватории водозабора и по прилегающему к водозабору берегу от линии уреза воды при летне-осенней межени – не менее 100 м.

Границы 2-го пояса на водотоке устанавливаются с учетом микробного самоочищения. Граница должна быть удалена вверх по течению водозабора настолько, чтобы время пробега по основному водотоку и его притокам (при расходе воды в водотоке 95% обеспеченности) было:

· не менее 5 суток для IА, Б, В, Г и IIА климатических районов;

· не менее 3 суток для IД, IIБ, В, Г и III районов.

Граница 2-го пояса для водоемов должна быть удалена по акватории во все стороны от водозабора на расстояние: 3 км – при наличии нагонных ветров до 10%; 5 км - при наличии нагонных ветров более 10%. Боковые границы 2-го пояса водоема от линии уреза воды должны быть расположены на расстоянии при равнинном рельефе местности не менее 500 м. Граница 2-го пояса водотока вниз по течению устанавливается не менее 250 м от водозабора.

Границы 3-го пояса на водотоке вверх и вниз по течению совпадают с границами 2-го пояса. Боковые границы должны проходить по линии водоразделов в пределах 3…5 км, включая протоки. Границы 3-го пояса на водоеме полностью совпадают с границами 2-го пояса.

Границы ЗСО водопроводных сооружений и водопроводов. Граница 1-го пояса водопроводных сооружений принимается на расстоянии: от стен запасных и регулирующих емкостей, фильтров и контактных осветителей – не менее 30 м; от водонапорных башен – не менее 10 м; от остальных помещений – не менее 15 м.

Ширина санитарно-защитной полосы по обе стороны от крайних линий водопровода принимается: при отсутствии грунтовых вод – не менее 10 м при диаметре водоводов до 1000 мм и не менее 20 м при диаметре более 1000 мм; при наличии грунтовых вод – не менее 50 м.

Для зон санитарной охраны предусмотрен комплекс водоохранных мероприятий. Охрана водозабора подземных вод первого пояса ЗСО включает следующие мероприятия:

· отвод поверхностных стоков за пределы территории;

· озеленение, ограждение и охрана территории;

· запрещение всех видов строительства, не имеющих отношения к эксплуатации реконструкции и расширению водопроводных сооружений, а также запрещение применения ядохимикатов и удобрений;

· оборудование зданий канализацией с отведением сточных вод;

· систематический контроль сточных вод в месте водозабора.

На территории второго и третьего поясов ЗСО источников подземных вод запрещается:

· бурение новых скважин и новое строительство;

· закачка отработанных вод в подземные горизонты, подземное складирование твердых отходов и разработка недр земли;

· размещение складов горюче-смазочных материалов, ядохимикатов, минеральных удобрений, накопителей промстоков, шламохранения и других объектов;

· размещение кладбищ, скотомогильников, полей ассенизации, полей фильтрации, навозохранилищ, животноводческих и птицеводческих предприятий и других объектов.

На территории ЗСО источников поверхностных вод запрещается:

· спуск любых сточных вод;

· добыча песка, гравия и проведение дноуглубительных работ без согласования с центром санитарно-эпидемиологического надзора;

· купание, туризм, водный спорт, рыбная ловля, стирка белья, водопой скота и другие виды водопользования.

В пределах санитарно-защитной полосы водовода должны отсутствовать источники загрязнения почвы и грунтовых вод.

Организации ЗСО предшествует разработка её проекта. Проект включает: определение границ зоны и составляющих её поясов; план мероприятий по улучшению санитарного состояния территории ЗСО и предупреждению загрязнения источника; правила и режим хозяйственного использования территорий 3-х поясов. Решение об организации ЗСО принимается на стадии проекта районной планировки или генерального плана города, при выборе источника водоснабжения. В генеральных планах застройки населенных мест ЗСО источников водоснабжения указываются на схеме планировочных ограничений.

Сточные воды города. Сточными водами являются хозяйственно-бытовые, ливневые и производственные сточные воды. Они поступают в канализационную сеть, откуда направляются непосредственно в водный объект, или сначала на станцию очистки сточных вод, а после нее в водный объект. Городская канализация бывает:

· полностью раздельной, если бытовые стоки отводятся отдельно от производственных и от ливневых;

· смешанной, если в единую канализацию поступают бытовые, производственные и ливневые сточные воды;

· полураздельной или неполной раздельной, если, например, в одну сеть сбрасываются бытовые и производственные, а в другую - ливневые стоки.

В каждом городе имеется своя, уже сложившаяся система канализации.

Сточные воды больших городов перед спуском в водный объект очищаются на станциях очистки, которые могут быть централизованными и локализованными.

Вместе с этим для города характерен поверхностный рассредоточенный сток загрязненных вод, не попадающих в канализационную сеть. Талые и дождевые воды смывают с городской территории мусор, нефтепродукты, выпавшие атмосферные аэрозоли, строительные материалы и т.п. Все это выносится в водные объекты и загрязняет их. На международных конгрессах «Экватек - 96» и «Экватек - 98» отмечалось, что масса загрязняющих веществ, поступающих с неорганизованными сбросами, в 3…5 раз больше сбросов с городских очистных сооружений, через которые поступают в водные объекты практически все хозяйственно-бытовые сточные воды и большая часть промышленных.

Технико-технологические методы очистки сточных вод на городских станциях предусматривают механическую и биологическую очистку, обеззараживание, доочистку. Механическая очистка обеспечивает удаление плавающих и взвешенных примесей.

Биологическая очистка осуществляется в аэротенках – железобетонных, кирпичных или металлических емкостях, заполненных водой и активным илом и насыщаемых воздухом. Активный ил – это специально культивируемое сообщество организмов, пищей для которых служат органические вещества сточных вод. Биологическая очистка не обеспечивает полного уничтожения всех болезнетворных бактерий, поэтому перед сбросом в водные объекты вода обеззараживается жидким хлором или хлорной известью. После хлорирования вода подвергается дегазации, так как попадание хлора в воду может привести к гибели рыбы. Сбрасываемая вода по составу и свойствам должна соответствовать природной воде приемника сточных вод (воде реки, озера). Для придания очищаемым сточным водам качества природной воды может проводиться их доочистка в биологических прудах или сооружениях типа биоплато (рис. 4.13) [40].

Отходом биологической очистки сточных вод является отработанный иловый осадок. Специальными приемами обработки влажность ила снижают на 65…70%. Окончательное обезвоживание, высушивание и компостирование (перегнивание) илового осадка проводят на иловых площадках в течение нескольких месяцев. Компостированный иловый осадок является хорошим органическим удобрением. Обезвоживание осадков осуществляют также механически с помощью вакуум-фильтров, фильтр-прессов, центрифуг и виброфильтров. Термическую обработку осадков производят сушкой. Разработаны технологические схемы получения из обработанного осадка белково-витаминного кормового продукта (белвитамина), кормовых дрожжей и технического витамина В12. Когда утилизация осадков невозможна (высокое содержание тяжелых металлов и т.п.), осадки сжигают, при этом объем осадков уменьшается в 80…100 раз [64].

Рис. 4.13. Очистные сооружения типа биоплато:

А - инфильтрационное биоплато; Б - поверхностное биоплато; 1 - подача воды на очистку; 2 - отстойник; 3 - осадок; 4 - распределительный трубопровод; 5 - противофильтрационный экран; 6 - растительный грунт; 7 - песок; 8 - щебень; 9 - дренаж; 10 - высшая водная растительность; 11 - каменная наброска; 12 - очищенная вода

 

Технико-технологические методы очистки производственных сточных вод. На проектируемом промышленном предприятии должны использоваться те технологические процессы основного производства, при которых обеспечивается минимальное потребление воды, и применяться такие технологические решения, которые позволяют использовать схемы оборотного и повторно-последовательного водоснабжения. Забор воды из источников питьевого водоснабжения допускается в исключительных случаях и при соответствующем технико-технологическом обосновании. Если для водоснабжения предприятия намечается использование подземных вод, анализируются данные о возможности отбора вод в требуемом объеме, о глубине залегания и мощности водоносных горизонтов, химическом составе вод и др.

Производственные сточные воды очищаются на очистных сооружениях данного промышленного объекта. После очистки они могут быть использованы для технического водоснабжения, или поданы на городские очистные сооружения для доочистки, или сброшены в водные объекты.

В основе очистки и обеззараживания природных вод на стадии водоподготовки, а также сточных и оборотных вод в системах водоочистки лежат однотипные по своей сути процессы. Задачей очистки воды является снижение содержания загрязняющих веществ, находящихся в виде взвешенных частиц или в растворенной форме, до нормируемого уровня. Задача обеззараживания воды – уничтожение патогенных микроорганизмов. Современные технологии обработки воды многообразны. Они основаны на использовании большого числа методов, реагентов и технических решений. Вода очищается от взвешенных частиц, высокомолекулярных соединений, ионов металлов и минеральных солей.

Технико-технологические методы очистки и обеззараживания сточных вод разделяются на:

· механические ® отстаивание,

фильтрование,

центрифугирование,

процеживание;

· физико-химические ® коагуляция,

сорбция,

флотация,

ионный обмен,

обратный осмос,

электрохимические и др.;

· химические ® нейтрализация,

аэрация,

озонирование,

хлорирование и др.;

· физические ® УФ-излучение,

электрический разряд,

ультразвук и др.;

· биологические ® биологическое разложение,

биохимическое окисление.

Принципы очистки и обеззараживания рассмотрены нами при описании подготовки питьевой воды, а также очистки городских сточных вод.

Экологические требования к сбросу производственных сточных вод [75]. В поверхностные водные объекты запрещается сбрасывать сточные воды, содержащие возбудителей инфекционных заболеваний, а также вещества, для которых не установлены ПДК или ОДУ. Не допускается сброс сточных вод в черте населенных пунктов, в пределах первого пояса ЗСО источников хозяйственно-питьевого водоснабжения.

Негативным фактором воздействия сточных вод на водные объекты является температура. Так, летняя температура воды в результате сброса сточных вод в водные объекты хозяйственно-питьевого и рекреационного водопользования не должна повышаться более чем на 3 оС по сравнению со среднемесячной температурой воды самого жаркого месяца года.

Контрольный створ (пункт) на водотоках устанавливается не далее 500 м по течению от места сброса сточных вод и в радиусе 500 м от места сброса на акватории (на непроточных водоемах и водохранилищах). При сбросе сточных вод в черте населенных пунктов контрольный створ располагается непосредственно у места сброса.

 

Количество производственных сточных вод, сбрасываемых в водные объекты, регламентируется нормативами предельно допустимых сбросов (ПДС). Под ПДС понимают максимально допустимую массу загрязняющего вещества, отводимую со сточными водами в единицу времени, которая позволяет обеспечить соблюдение норм качества воды в контрольном створе водного объекта.

ПДС (г/ч) для каждого показателя качества воды определяется как произведение максимального часового расхода сточных вод Qст3/ч) на его предельно допустимое значение СПДС (г/м3 или мг/л):

ПДС = Qст × СПДС .

Расчет ПДС основан на следующих положениях [75].

1. ПДС устанавливается для каждого выпуска сточных вод в водный объект и для каждого вредного вещества, в том числе продуктов его трансформации.

2. ПДС устанавливается исходя из условия, что концентрации загрязняющих веществ не будут превышать гигиенические нормативы химических веществ и микроорганизмов в воде водного объекта в контрольном створе.

3. При расчете ПДС не учитывается ассимилирующая способность водных объектов.

4. При наличии в сточных водах химических веществ, содержащихся в воде фонового створа на уровне ПДК, в расчетах ПДС не учитываются процессы разбавления.

Исходными данными для расчета ПДС являются: категория водного объекта – приемника сточных вод; расчетное значение фоновой концентрации; кратность разбавления сточных вод при наихудших гидрологических условиях; тип и месторасположение выпуска сточных вод; фактические (проектные) концентрации загрязняющих веществ в сточной воде; максимальный часовой расход сточных вод.

В зависимости от значения фактической (проектной) концентрации, расчет ПДС проводят следующим образом.

1. Фактическая (проектная) концентрация загрязняющего вещества Сст меньше его нормативной концентрации в водном объекте (приемнике сточных вод), т.е. Сст< 1ПДК. В этом случае за показатель СПДС принимается фактическая (проектная) концентрация вредного вещества: СПДС = =Сст. Предельно допустимый сброс рассчитывается как

ПДС = Qст × Сст .

2. Фактическая (проектная) концентрация загрязняющего вещества Сст превышает нормативную концентрацию, установленную для водного объекта данной категории водопользования, т.е. Сст ³ 1ПДК. Показатель СПДС принимается равным 1ПДК: СПДС = 1ПДК. ПДС рассчитывается как

ПДС = Qст × ПДК.

В этом случае для действующих предприятий устанавливаются временно согласованные сбросы (ВСС) на период осуществления мер по достижению ПДС (на срок не более 5 лет).

При установлении норматива ПДС должно соблюдаться условие суммирования концентраций вредных веществ для водных объектов соответствующей категории. Например, для веществ 1-го и 2-го классов опасности и культурно-бытового (рекреационного) водопользования водного объекта должно соблюдаться условие

.

Для каждого вещества СПДС составляет долю своего ПДК, т.е.

= Кi × ПДКi , когда Кi < 1 .

Значения Ki должны удовлетворять двум ограничениям:

£ и .

С учетом этих ограничений величины Кi должны подбираться таким образом, чтобы достижение норм ПДС требовало минимальных экономических затрат [40]. Фоновая концентрация загрязняющего вещества должна быть учтена в доле его ПДК.

Сброс вод в подземные горизонты применяется при отсутствии разработанных технологий очистки определенных видов стоков. Он возможен только в тех случаях, когда поглощающие скважины и колодцы для сброса сточных вод не могут быть источниками загрязнения водных горизонтов, используемых или намечаемых для водоснабжения [48].

Поверхностный сток с территории предприятия. Загрязняющие вещества от проектируемого объекта могут поступать в водные объекты не только через выпуски сточных вод, но и при смыве вредных веществ с территории.

Годовой объем стока дождевых вод WД и талых вод WТ , м3/год, определяется по формуле [40]

WД (Т) =10 Н ψ F ,

где Н – слой осадков за теплый или холодный период года, мм; ψ – коэффициент стока дождевых или талых вод; F - площадь водосбора, га (1 га = =104 м2).

Объем поливомоечных сточных вод WПМ , м3/год, определяется по формуле

WПМ =10 q n K F ,

где q – расход воды на мойку единицы площади твердых покрытий, q = =1,2…1,5 л/м2; n – количество моек в году; K – коэффициент стока поливомоечных вод, К = 0,5; F – площадь обрабатываемых покрытий, га.

Общий объем поверхностного стока с водосборной территории за год определяется как сумма

W = WД + WТ + WПМ .

Масса загрязняющих веществ G, г/год, выносимая с территории предприятия поверхностным стоком, рассчитывается как

G = WД × СД + WТ × СТ + WПМ × СПМ ,

где СД, СТ и СПМ – концентрации загрязняющих веществ в дождевых, талых и поливомоечных сточных водах, г/м3 (или мг/л).

В проектах предприятий должен предусматриваться отвод загрязненного поверхностного стока с территории в специальные накопители, локальные очистные сооружения или ливневую городскую канализацию.

Для защиты поверхностных и подземных водоемов от загрязненных дренажных вод должны предусматриваться устройства пристенных и пластиковых дренажей при строительстве зданий и сооружений проектируемого объекта. Отвод дренажных вод должен планироваться на очистные сооружения или гидрографическую сеть.

– Конец работы –

Эта тема принадлежит разделу:

ЭКОЛОГИЯ ГОРОДСКОЙ СРЕДЫ

На сайте allrefs.net читайте: "ЭКОЛОГИЯ ГОРОДСКОЙ СРЕДЫ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Органолептические показатели питьевой воды

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ГОРОДСКОЙ СРЕДЫ
    Рекомендовано Учебно-методическим объединением Ассоциации строительных вузов в качестве учебного пособия для студентов, обучающихся по специальности 290500 «Городско

Хомич В.А.
Экология городской среды: Учеб. пособие для вузов. – Омск: Изд-во СибАДИ, 2002. – 267 с.   Рассмотрены экологические проблемы крупного города. Показаны пути

Динамика урбанизации
Процесс роста и развития городов получил название урбанизации (лат. urbanus - городской). Этот поступательный процесс особенно ярко проявился в эпоху научно-технической революции. Если город

Рост городского населения за 1950-2000 гг.
Показатели Годы Население Земли, млн. чел.

Процент городского населения в некоторых регионах мира
Регионы мира Годы Северная Америка

Динамика численности населения Российской Федерации
Год Численность всего населения РФ, тыс. человек Численность городского населения, тыс. человек Процент городского населения

Динамика числа городов Российской Федерации
Год Количество городов с числом жителей, тыс. чел. До 10 10…19,9 20…49,9 50…99,9 100…499,9

Динамика численности населения городов Российской Федерации
Год Численность населения в городах с числом жителей, тыс. чел. До 10 10…19,9 20…49,9 50…99,9

Город как искусственная среда обитания
Город – это экологическая система, созданная людьми. Основным представителем биоты города является человек. Человек доминирует над другими организмами – растениями, животными, птицами, насекомыми,

Уровень автомобилизации и относительные показатели аварийности
по странам мира (1998 г.) Страна Количество ДТП, тыс. ед. Количество легковых. АТС на 1000 жит. Количество ДТП на 1

Пути устойчивого развития городской среды
Концепция устойчивого развития человечества впервые была принята на Конференции ООН по окружающей среде и развитию в Рио-де-Жанейро в 1992 году. В Российской Федерации концепция устойчивого развити

Городской среды
1-я ступень. Краховое состояние – массовые смертельные исходы среди населения, невосстанавливаемые поражения природной среды и разрушения функциональной и композиционной систем организации г

Экологическое законодательство
Экологическое законодательство представлено федеральными законами, а также принимаемыми в соответствии с ними иными нормативными правовыми актами РФ и ее субъектов. Основными законами по регулирова

Эколого-градостроительное законодательство
Требования в области охраны окружающей среды при градостроительной деятельности определены правовыми нормами законов и иных нормативных правовых актов экологического законодательства. Градостроител

Требования к качеству городской среды
Воздух, воды и почвы в городе подвергаются негативному воздействию хозяйственной и иной деятельности. В результате этого физические, химические и биологические показатели их качества ухудшаются и м

Охрана городской среды при хозяйственной деятельности
Человечество не может прекратить хозяйственную деятельность, промышленное производство, выпуск автомобилей и товаров потребления. Но огромные масштабы антропогенного воздействия создают опасность з

Оздоровление и охрана городской среды
Несмотря на то, что за последнее десятилетие значительно снижены объемы производства, экологическая обстановка в ряде городов России остается напряженной. Начавшийся рост промышленного производства

Климатические условия территории застройки
Большое влияние на организацию планировочной структуры города, систему застройки, ориентацию зданий, характер озеленения, а также на экологическую обстановку на территории города оказывают климатич

Микроклиматическая характеристика различных типов местоположений
Местоположение D R, % Кв DТмин , 0С DТмакс , 0С Dtб.п

Микроклимат города
В городе формируются особые микроклиматические условия. Микроклимат города – это климат приземного слоя воздуха отдельных участков городской территории. Приземной слой воздуха занимает возду

Определение ПЗА по среднегодовым значениям метеорологических параметров
Потенциал загрязнения атмосферы (ПЗА) Приземные инверсии Повторяемость дней, % Высота слоя перемещения, км Продолжительность тум

Ранжирование типов микроклимата по степени комфортности
и потенциальным условиям рассеяния примесей (РП) (скорость ветра 0…2 м/с) Тип местоположения Ранг микроклимата по

Природно-техногенные условия и экологическое состояние территории застройки
Природно-техногенные условия территории характеризуются: · наличием природных, природно-антропогенных и антропогенных объектов; · показателями состояния природных и природно-антро

Учет факторов природной среды в градостроительном проектировании
Факторы природной среды учитываются в теории и практике градостроительства. Этой наукой установлены показатели степени благоприятности природных факторов для выбора территории застройки (рельеф, ин

Оценка воздействия градостроительных объектов на окружающую среду
Природно-климатические и техногенные условия учитываются в градостроительном проектировании и влияют на принятие градостроительных решений. В свою очередь, градостроительные объекты воздействуют на

Источники загрязнения и загрязнители городской среды
Источниками загрязнения городской среды являются любые объекты производственной и бытовой деятельности людей, приносящие загрязнения в атмосферный воздух, водные объекты, почву и грунты горо

Масса выбросов при сгорании 1т топлива
  Вредные вещества Формула Масса выбросов при сгорании 1 т топлива Бензин Дизельное топливо

Веществ в атмосферу г. Омска в 2000 г.
  Источники инфразвука – автомобили, трамваи, промышленные установки аэродинамического и ударного действия, радиоактивные самолеты. К источникам вибрации относятся: городской наземный

В поверхностные водные объекты г. Омска в 1999 г.
Классификация источников загрязнения. Источники антропогенного загрязнения воздушной и водной сред города классифицируют по ряду признаков [40, 52]. 1. По продолжитель

Контроль за состоянием городской среды
Загрязнение окружающей среды создается вредными выбросами, сбросами и физическими воздействиями от всех стационарных и подвижных (передвижных) источников, расположенных на территории города, а такж

Оценка экономического ущерба от загрязнения городской среды и его возмещения
Под экономической оценкой ущерба или экономическим ущербом, наносимым окружающей среде, следует понимать выраженные в стоимостной форме фактические и возможные убытки, причиняемые загрязнени

Экономическая оценка ущерба от выбросов ЗВ автотранспортом
г. Омска (1999 г.) Компонент Формула Масса выбросов ЗВ Мi , тыс.т/год Коэффициент опасности ЗВ К

Методы охраны и регулирования качества воздушной среды
В течение всей жизни человек находится в среде воздуха, от качества которой зависит его здоровье, самочувствие, работоспособность. Воздух контактирует со всеми элементами природы. Ухудшение качеств

С расстоянием от источника выбросов
Значение опасной скорости ветра Uм , м/с, при которой достигается наибольшее значение приземной концентрации вредных веществ См , в случае f < 100 опре

До объектов застройки
Объекты, до которых исчисляется расстояние Расстояние, м Автостоянки (открытые площадки) и гаражи-стоянки вместимостью, машино-мест

Автомобилями массой до 1250 кг, г/км
Ступень Год введения Частицы NOx CxHy CO ЕВРО-1* ЕВРО-2 ЕВ

Динамика норм выбросов дизельных грузовых
автомобилей и автобусов, г/(кВт×ч) Ступень Год введения Частицы NOx CxH

Методы охраны городской среды от шума и электромагнитных полей
Защита городской среды от акустического загрязнения. Городские шумы представляют собой хаотическое сочетание различных мешающих и нежелательных звуков. Звук – это явление, субъ

Допустимые уровни звука и звукового давления в жилой застройке
  Территории Допустимые уровни звукового давления (эквивалентные уровни звукового давления), дБ, в октавных полосах частот со среднегеометрическими частота

Низкочастотные характеристики автотранспорта
  Источники шума Октавные полосы с максимальными уровнями, Гц Максимальные уровни в октавах, дБ Общий уровень звукового давления

Нормы инфразвука
  Объект Уровни звукового давления, дБ, в октавных полосах частот со среднегеометрическими частотами, Гц Общий уровень звукового давления, дБЛ

ПДУ ЭМП, создаваемых радиотехническими объектами
  Диапазон частот 30×…300 кГц 0,3…3 МГц 3…30 МГц 30…300 МГц 300 МГц …300 ГГц

ПДУ ЭМП, создаваемые телевизионными станциями
  Частота, МГц 48,4 88,4 192,0 ПДУ, В/м

Радиусы СЗЗ для типовых радиопередающих станций, м
  Диапазоны частот, МГц Мощность передатчика, кВт До 5 5…25 25…100 Более 100

Радиусы СЗЗ типовых телецентров и телевизионных ретрансляторов
  Мощность одного передатчика, кВт Суммарная мощность с учетом УКВ- и ЧМ- вещания, кВт Радиус СЗЗ, м До 5/2,5 (одна

Методы охраны и регулирования качества водной среды
Водоснабжение города «чистой» водой, отвод большого количества использованных сточных вод, очистка сточных вод – это экологические проблемы города. Хозяйственно-питьевое, культурно

Характеристики интегральной оценки качества воды
  Значение ИЗВ Класс качества воды Характер качества воды £ 0,2 1-й Очень чистая

В питьевой воде
Показатель ПДК, мг/л Показатель вредности Класс опасности Неорганические вещества Алюминий (Al

ПДК веществ в питьевой воде после ее обработки
Показатель ПДК, мг/л Показатель вредности Класс опасности Хлор     &nb

Мероприятия по охране почв и растительного покрова на городских территориях
Городские почвы. Почвы в результате градостроительной и хозяйственной деятельности подвергаются деградации, отчуждению, загрязнению. Деградация городских почв

Ассортимент растений, рекомендуемый для создания санитарно-защитных зон и озеленения города
Порода Жизненная форма Средняя относительная устойчивость к газопылевым выбросам, балл Поглощение SO2 одним растением, г/вегет. пе

Мусороудаление в городах
Рост городов и возрастающий при этом объем хозяйственной и иной деятельности ведет к интенсивному накоплению отходов производства и потребления. Возникающие вокруг городов свалки отходов, часто пло

Нормы ежегодного накопления ТБО для объектов крупного города
Объект образования отходов Расчетная единица Количество накопления ТБО в год Средняя плотность, кг/м3 кг

Морфологический состав ТБО, % по массе
  Компонент Климатическая зона средняя южная северная Пищевые отходы

Технико-эксплуатационные показатели мусоросжигательных заводов
  Показатель Местонахождение мусоросжигательного завода Москва, № 2 Москва, № 3 Пятигорск Му

Технико-эксплуатационные показатели мусороперерабатывающих заводов
Показатель Мусороперерабатывающие заводы в городах С-П., № 1 Нижний Новгород С-П., № 2 Тольятти

Мероприятия по оптимизации микроклимата среды зданий
Городской житель подавляющую часть своей жизни проводит в помещениях зданий. В зависимости от образа жизни и условий трудовой деятельности он находится там от 52 до 85% суточного времени. Поэтому в

Микроклимата помещений жилых зданий и общежитий
Период года Помещение Температура воздуха, оС Результирующая температура, оС Относительная влажность, %

И коммуникаций в середине здания
Инженерно-техническими мероприятиями является оснащение зданий системами отопления с автоматическим терморегулированием, приточной вентиляцией с подогревом воздуха в зимнее время, электропод

Продолжительность непрерывной инсоляции
Зона территории Географическая широта Контрольный период продолжительности инсоляции Продолжительность инсоляции, ч, не менее

Регулирование качества воздушной среды здания
Качество воздушной среды жилых и общественных зданий является одним из важнейших факторов жизнедеятельности современного человека. Даже малые источники загрязнения из-за ограниченного объема воздух

Вредные вещества, выделяющиеся из строительных материалов
  Вещества Источник поступления Формальдегид   ДСП, ДВП, ФРП, мастика, герлен, пластификаторы, шпаклевка и др.

Защита среды зданий от шума, вибрации и электромагнитных полей
Защита от шума. Шумы в помещении жилых и общественных зданий можно разделить на внутренние и внешние, проникающие снаружи. К внутренним шумам относятся бытовые шумы и шумы, соз

Допустимые уровни звукового давления и уровни звука в помещениях
  Помещения Уровни звукового давления, дБ, в октавных полосах частот со среднегеометрическими частотами, Гц Уровни звука и эквивалентные уровн

Нормы вибрации в помещениях
Среднегеометрические частоты полос, Гц Допустимые значения виброускорения виброскорости м/с2&ti

Нормы инфразвука
  Объект Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц Общий уровень звукового давления, дБ Лин

И материалами, дБ
  Конструкция или материал Сантиметровые волны Метровые волны Кирпичная стена толщиной 70 см

Мероприятия по защите среды зданий от радиации
Облучение или радиационное поражение живых организмов связано с воздействием излучения коротких длин волн – рентгеновских лучей, гамма-лучей (рис. 4.12). Эти виды лучей представляют собой ионизирую

Присутствующих в строительных материалах
Строительные материалы Аэфф, Бк/кг Материалы природного происхождения Песок Гравий Глина Щебень: гранитный песчаный и смеш

Экология жилой среды
Внутренняя среда зданий непосредственно влияет на здоровье и психоэмоциональное состояние проживающих в них людей. В связи с этим в профессиональной печати появились и используются термины «здорово

Библиографический список
1. Российская архитектурно-строительная энциклопедия. Т. IV.-М.: Альфа, 1996. -336 с. 2. Градостроительный кодекс РФ. – М.: Проспект, 2001.-72 с. 3. Экология, охрана природы, экол

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги