Характеристика основных методов анализа и моделирования экологических процессов

Надорганизменные системы, которые изучает экология — популяции, биоценозы, экосистемы — чрезвычайно слож­ны. В них наблюдается огромное количество взаимосвязей, прочность и постоянство которых постоянно меняются. Одни и те же внешние воздействия могут привести к различным, иногда прямо противоположным результатам, в зависимос­ти от того, в каком состоянии находилась система в момент воздействия.

Предвидеть ответные реакции системы на действия кон­кретных факторов можно лишь через сложный анализ су­ществующих количественных отношений и закономернос­тей. Поэтому в экологии широкое распространение получил метод математического моделирования как средство изуче­ния и прогнозирования природных процессов.

Одной из первых экологических моделей была модель Вольтерра-Лотки. В любом биоценозе происходит взаимо­действие между всеми элементами: особи одного вида взаи­модействуют с особями и своего вида, и других видов. Эти взаимодействия могут быть мирными, а могут иметь связь типа «хищник-жертва». Было замечено, что численность хищных рыб колеблется в обратной пропорции относитель­но колебаний численности мелких рыбешек, которые слу­жат им пищей. Анализ этих колебаний позволил математи­ку Вито Вольтерра (1860 — 1940) вывести необходимые урав­нения. Если бы в биоценозе было только два вида (очень большое упрощение), то даже и в этом случае динамика чис­ленности каждого из видов сильно отличалась бы от карти­ны их независимого существования.

Кроме ситуаций «хищник-жертва» и «конкуренция-со­существование» может моделироваться ситуация «симбиоз». Модель симбиоза отражает кооперацию отдельных видов в борьбе за существование, когда один вид помогает или по­кровительствует другому (кооперация пчел, кооперация де­ревьев). Математические модели, настроенные на устойчи­вость такой системы, показывают, что при достаточно боль­ших начальных значениях численности всегда будет проис­ходить экспоненциальный рост популяций, что в определенных случаях соответствует действительности. Биосфера сформировалась по собственному плану без участия челове­ка. Качественно новый этап в развитии биосферы начался с появлением человека в конце третичного периода. Сначала деятельность человека мало отличалась от деятельности дру­гих существ. Добывание огня выделило человека из ряда других животных. При этом человек не только сумел рассе­литься в районы холодного климата, пережить оледенения и защититься от хищников, но и научился уничтожать орга­нические остатки, вмешиваясь в круговорот веществ в био­сфере. Сейчас происходит интенсивная перестройка приро­ды в результате человеческой деятельности. Перед челове­чеством вырисовывается угроза голода, самоотравления, разрушения биологической основы наследственности. Для предотвращения угрозы надо знать ее причины. В этих це­лях строились глобальные экологические модели.

Первой моделью прогнозирования расхода ресурсов была модель Т. Мальтуса (1798), который исходил из геометри­ческого роста численности населения и арифметического роста средств существования. Последующий опыт проиллю­стрировал упрощенность и ошибочность этого подхода.

Дж. Форрестер (1970) предложил динамическую мировую модель, учитывающую изменение численности населения, ка­питальных вложений; природных ресурсов, загрязнение сре­ды, производство продуктов питания. Принятые в модели вза­имосвязи достаточно сложны. Например, рост численности на­селения поставлен в зависимость от его плотности, обеспечен­ности питанием, уровня загрязнения окружающей среды, на­личия ресурсов, материального благосостояния; темп смертно­сти увязан с уровнем жизни, питанием; загрязнение среды связано с объемом фондов и т.д. Многофакторная модель Форрестера позволяет рассматривать динамику показателей состоя­ния мировой системы в зависимости от варьирования различ­ных факторов. Одним из результатов исследования Форрестера были графики расхода природных ресурсов при стабилиза­ции численности населения, фондов и «качества» жизни.

Группа Д. Мероуза (1972) построила динамическую мо­дель на базе пяти основных показателей: ускоряющаяся индустриализация, рост численности населения, увеличе­ние числа недоедающих, истощение ресурсов, ухудшение окружающей среды. В модель заложен большой набор част­ных связей, в три раза больше, чем в модели Форрестера. Прогноз по модели Мероуза по различным вариантам пока­зал, что вследствие исчерпания природных ресурсов и рас­тущего загрязнения в середине XXI века произойдет миро­вая катастрофа. Единственным вариантом для ее исключе­ния может быть стабилизация численности населения и уве­личение объема промышленности, стимулирование капита­лом развития сельского хозяйства.

Модель М. Месаровича и Э. Пестеля (1974) отличается размерностью и детальностью связей. В ней содержится бо­лее ста тысяч уравнений, описывающих мировую систему как совокупность региональных систем. Авторы выделили наиболее крупные страны (Россия, Китай, Вьетнам и др.) и регионы (Северная Америка, Западная Европа, Северная Африка и др.), 10 групп населения, 5 категорий машин, 2 разновидности сельскохозяйственного производства, 19 раз­новидностей промышленного капитала, 5 видов капитала в энергетике. На базе этой модели авторы рассмотрели раз­личные сценарии развития мировой системы.

В Пенсильванском университете создана система совмес­тного функционирования национальных моделей. Ее мате­матическая часть состоит из более чем 20 тысяч уравнений.

Группой экспертов ООН под руководством В. Леонтьева в конце 70-х годов разработана межрегиональная модель межотраслевого баланса мировой экономики.

В конце тех же 70-х годов под руководством Н.Н. Моисе­ева была разработана математическая модель биосферы «ГЕЯ». Она состояла из двух взаимосвязанных систем. Пер­вая описывала процессы, происходящие в атмосфере и оке­ане. Вторая — круговорот веществ в природе. В ее основу положены такие локальные модели, как испарения с повер­хности океана и конденсация воды в атмосфере, поглоще­ние углекислоты морской водой, перенос энергии атмосфе­рой, реакции фотосинтеза, отмирание растений, распреде­ление биомассы на поверхности Земли и др. На базе модели «ГЕЯ» был выполнен расчет различных сценариев измене­ния климата на планете под воздействием ядерного взрыва, крупного пожара, извержения вулкана, создания крупного локального топливно-энергетического комплекса, изменения горного ландшафта.

В первой половине 80-х годов ученые различных стран создавали глобальные математические модели с целью про­гнозирования последствий ядерной войны. Наиболее обшир­ными были модель американского астронома К. Сагапа и модель «ГЕЯ». В значительной степени эти исследования I стимулировали политические решения государств по сокращению ядерного вооружения.

Практически в построении математических моделей слож­ных процессов выделяются следующие этапы:

• тщательное изучение тех реальных явлений, которые нужно смоделировать; выявление главных компонентов и установление законов, определяющих характер взаимодей­ствия между ними; формулировка тех основных вопросов, ответы на которые должна дать модель;

• разработка математической теории, описывающей изу­чаемые процессы с необходимой детальностью; на ее основе строится модель в виде системы абстрактных взаимодействий; установленные законы должны быть облечены в точную ма­тематическую форму; конкретные модели могут быть пред­ставлены в виде логической схемы машинной программы;

• проверка модели — расчет на основе модели и сличение результатов с действительностью. При этом проверяется правильность сформулированной гипотезы. При значитель­ном расхождении модель отвергают или совершенствуют. При согласованности результатов модели используют для прогноза, вводя в них различные исходные параметры.

Расчетные методы, в случае правильно построенной мо­дели, помогают увидеть то, что трудно или невозможно про­верить в эксперименте; позволяют воспроизводить такие про­цессы, наблюдение которых в природе потребовало бы ог­ромных сил и больших промежутков времени;

В настоящее время моделируют различные по масшта­бам и характеру процессы, происходящие в реальной среде. Математическими моделями описываются и проверяются разные варианты динамики численности популяций, про­дукционные процессы в экосистемах, условия стабилизации сообществ, ход восстановления систем при разных типах на­рушений. Строятся математические модели по регулирова­нию промыслового усилия, модели промышленных популя­ций; модели трофических связей по решению проблемы с вредителями, модели эксплуатации лесного хозяйства, стра­тегические модели использования сырья, математические модели выбора способов производства, модель оптимизации платы за воду и многие другие;

В настоящее время необходимы глобальные математиче­ские модели, в которые входили бы подсистемы взаимодей­ствия между атмосферой и водой, атмосферой и поверхностью почвы, процессы в каждом из элементов окружающей среды, взаимодействие верхнего слоя атмосферы с космосом, меха­низмы саморегулирования в природе, влияние деятельности человека на окружающую среду. При значительном объеме возможностей подобная модель должна быть достаточно де­тальна для регионов Земли. На такой модели можно будет оценить крупные инженерные решения, деятельность городов, варианты гидросистем, размещение заводов и т.д.