Принцип действия циклона

Широкое применение для сухой очистки газов получили циклоны различных типов (рисунок 3.1). Газовый поток вводится в циклон через патрубок 2 по касательной с внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием силы частицы пыли образуют на стенке циклона пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происходит за счёт поворота газового потока в бункере на 180°. Освободившись от пыли, газовый поток образует вихрь и выходит из бункера, давая начало вихрю газа, покидающего циклон через выходную трубу 3. Для нормальной работы циклона необходима герметичность бункера. Если бункер негерметичен, то за счёт подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу. Одной из конструктивных разновидностей циклонов являются прямоточные циклоны. Они обладают меньшим гидравлическим сопротивлением, меньшими габаритами и меньшей эффективностью очистки по сравнению с циклонами обычного типа. Прямоточные циклоны применяются для очистки газового потока от крупнозернистой пыли. Циклоны СК–ЦН–34 работают эффективно при небольшой скорости газового потока на входе в циклон, поэтому подвержены истиранию пылью больше, чем другие циклоны. Для очистки больших масс газов – дымовые газы при сжигании твёрдого топлива, пыль сушилок и так далее – применяются батарейные циклоны, состоящие из большого числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами.

35 Электрофильтры.

Электрическая очистка – один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах.

Загрязнённые газы, поступающие в электрофильтр, всегда оказываются частично ионизированными за счёт различных внешних воздействий, поэтому они способны проводить так, попадая в пространство между двумя электродами. Величина силы тока зависит от числа ионов и напряжения между электродами. При увеличении напряжения в движение между электродами вовлекается всё большее число ионов и величина тока растёт до тех пор, пока в движении не окажутся все ионы, имеющиеся в газе. При этом величина силы тока становится постоянной (ток насыщения), несмотря на дальнейший рост напряжения. При некотором достаточно большом напряжении движущиеся ионы и электроны настолько ускоряются, что, сталкиваясь с молекулами газа, ионизируют их, превращая нейтральные молекулы в положительные ионы и электроны. Образовавшиеся новые ионы и электроны ускоряются электрическим полем и в свою очередь ионизируют новые молекулы газа. Этот процесс называется ударной ионизацией газа. Ударная ионизация газа протекает устойчиво лишь в неоднородном электрическом поле, характерном для цилиндрического конденсатора. В зазоре между коронирующим 1 и осадительным 2 электродами создаётся электрическое поле убывающей напряжённости с силовыми линиями 3, направленными от осадительного к коронирующему электроду и наоборот. Напряжение к электродам подаётся от выпрямителя 4 (рисунок 3.11).

Конструкцию электрофильтров определяют условия работы: состав и свойства очищаемых газов, концентрация и свойства взвешенных частиц, параметры газового потока, требуемая эффективность очистки и так далее. В промышленности используется несколько типовых конструкций сухих и мокрых электрофильтров, применяемых для очистки технологических выбросов. Сухие электрофильтры типа УГ (унифицированные горизонтальные) рекомендуется применять для сухой очистки газов от пыли различных видов. В корпусе электрофильтра установлены три группы коронирующих и осадительных электродов. Равномерный подвод газа к электродам достигается установкой на входе в фильтр распределительной решётки. Периодическая очистка коронирующих и осадительных электродов производится встряхивающим механизмом. Электрофильтры используют и для тонкой очистки газа от масляных туманов, смолы и пыли в различных отраслях промышленности.

Для очистки вентиляционных выбросов и рециркуляционного воздуха от разлучных пылей, а также приточного атмосферного воздуха с малой концентрацией загрязнений применяются двухзонные электрофильтры (рисунок 3.12). Загрязнённый газ в них проходит ионизатор, в состав которого входят положительные 1 и отрицательные 2 электроды. Ионизатор выполнен так, чтобы при скорости около 2 м/с частицы пыли успели зарядиться, но ещё не осели на электроды. Зарядившиеся частицы пыли газовым потоком увлекаются в осадитель, представляющий собой систему пластин-электродов 3 и 4. Заряженные частицы оседают в поле осадителя на пластинах противоположной полярности.

Эксплуатационные характеристики электрофильтров, весьма чувствительных к изменению равномерности поля скоростей на входе в фильтр. Для получения высокой эффективности очистки необходимо обеспечить равномерный подвод газа к электрофильтру как за счёт правильной организации подводящего газового тракта, так и за счёт применения распределительных решёток во входной части электрофильтра.