Биотический потенциал

Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды. Гипотетически скорость роста популяции зависит только от биотического потенциала, свойственного виду. Понятие биотического потенциала введено в экологию в 1928 г. Р. Чепменом. Этим показателем характеризуется теоретический максимум потомков от одной пары (или одной особи) за единицу времени, например за год или за весь жизненный цикл.

При расчетах биотический потенциал чаще всего выражают коэффициентом , означающим максимально возможный прирост популяции за отрезок времени , отнесенный к одной особи, при начальной численности популяции :

, (5.1)

откуда

. (5.2)

Уравнение (5.1) можно переписать в виде выражения

, (5.3)

откуда численность популяции в момент времени

. (5.4)

Таким образом, теоретически скорость естественного роста популяции в не лимитированной каким-либо фактором среде характеризуется экспоненциальным законом.

Понятно, что в природных условиях экспоненциальный закон роста численности популяции никогда не реализуется полностью. Биотический потенциал определяется как разность между рождаемостью и смертностью в популяциях: , где – число родившихся, а – число погибших особей в популяции за один и тот же период времени. Общие изменения численности популяции складываются из следующих факторов: рождаемости, смертности, конкуренции, вселения и выселения особей (миграции).

Рождаемость – это число новых особей, появляющихся в популяции за единицу времени в расчете на определенное число ее членов. Различают абсолютную и удельную рождаемость.

Абсолютная рождаемость характеризует общее число особей, появившихся в популяции за единицу времени, а удельная рождаемость – среднее изменение численности на особь за определенный промежуток времени.

Смертность также подразделяется на абсолютную и удельную и характеризует скорость убывания численности популяции вследствие гибели особей от хищников, болезней, старости и пр.

В замкнутых популяциях, в которых отсутствует миграция, полное изменение численности определяется соотношением рождаемости и смертности. Если рождаемость выше смертности, то удельная скорость роста положительная, а если смертность выше рождаемости, то отрицательная. В этом случае численность популяции убывает.

Рождаемость, смертность, динамика численности напрямую связаны с возрастной структурой популяции. Чтобы описать возрастную структуру, в популяции выделяют возрастные группы, состоящие из организмов одного возраста, и оценивают численность каждой из этих групп. Результат обычно представляют в виде диаграммы. Диаграмма имеющая вид трапеции, расширяющейся книзу, свидетельствует о том, что рождаемость выше смертности и численность популяции растет. Если же особей младших возрастных групп меньше, чем старших, то численность будет сокращаться.

Расселение, заключающееся в выселении особей из популяции или пополнении ее пришельцами, – закономерное явление, основанное на одной из важнейших биологических черт вида – его расселительной способности.

В каждой популяции того или иного вида часть особей регулярно покидает ее, пополняя соседние или заселяя новые, еще не занятые видом территории. Этот процесс часто называют дисперсией популяции. Расселение приводит к занятию новых биотопов, расширению общего ареала вида, его успеху в борьбе за существование.

Расселительная дисперсия служит средством связи между популяциями. Она повышается при увеличении плотности популяции. В период депрессии численности, наоборот, усиливается поток вселенцев в популяцию. У оседлых животных с хорошо выраженными территориальными инстинктами агрессивное поведение по отношению к пришельцам в период низкой численности популяции ослабевает, и вселенцы занимают свободные участки.

Некоторые популяции, занимающие малопригодные для обитания места, часто не могут поддерживать свою численность путем размножения и сохраняются преимущественно благодаря иммиграции. Такие популяции В.А. Беклемишев называл зависимыми.

Прогнозирование численности популяции является довольно сложной задачей, требующей знания многих факторов. Должны быть известны возрастная структура популяции, ее половой состав, плодовитость разных возрастных групп, репродуктивный возраст в популяции, расселительные возможности и т.п.

Математические модели, построенные на основе этих показателей, достаточно сложны и требуют для расчетов использования различных математических методов и вычислительной техники.

Если смертность в замкнутых системах выше рождаемости, то убывание численности тоже описывается уравнением (5.4), но с отрицательным . Такой процесс называют экспоненциальным затуханием численности.

Модель динамики численности популяции при ограниченных ресурсах предложил в 1845 г. французский математик Ферхюльст. Уравнение, которое носит его имя, имеет вид

. (5.5)

Уравнение Ферхюльста отличается от уравнения экспоненциального роста тем, что к его правой части добавляется выражение – . Это выражение учитывает число встреч животных, во время которых они могут конкурировать за какой-либо ресурс. Вероятность встречи двух особей пропорциональна квадрату численности (точнее, плотности) популяции.

Рост численности популяции многих животных действительно ограничивается именно частотой встреч особей.

Уравнение (5.5) можно переписать следующим образом

. (5.6)

Выражение в скобках представляет собой удельную скорость роста численности. Здесь она непостоянна и убывает с увеличением численности популяции. Это отражает усиление конкуренции за ресурсы по мере роста численности.

Если в правой части уравнении (5.5) вынести за скобки выражение и обозначить через , то получим

. (5.7)

Если мало по сравнению с , то выражение в скобках близко к единице, при этом уравнение (5.7) переходит в уравнение экспоненциального роста (5.4). Когда близко к , выражение в скобках близко к нулю, т.е. численность популяции перестает увеличиваться. Отсюда ясно, что в данной модели – это вместимость среды. При прирост численности становится отрицательным и она убывает до величины, равной вместимости среды.

График зависимости численности популяции от времени, соответствующий решению уравнения (5.7), представляет собой S-образную кривую. Эта кривая называется логистической кривой, а рост численности, соответствующий уравнению (5.7), – логистическим ростом.

На логистической кривой есть точка, где абсолютная скорость роста численности максимальна. Можно показать, что максимальная скорость роста достигается, когда численность равна .

Однако правила логистического роста применимы не ко всем случаям. Например, при слишком низкой численности у размножающихся половым путем видов мала вероятность встреч особей разного пола, отчего размножение может вообще прекратиться.