рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Сельскохозяйственные экосистемы

Сельскохозяйственные экосистемы - раздел Экология, Основы общей экологии   Сельскохозяйственные Экосистемы (Агроэкосистемы) Занимают Око...

 

Сельскохозяйственные экосистемы (агроэкосистемы) занимают около 1/3 территории суши, при этом 10% – это пашня, а остальное – естественные кормовые угодья. Агроэкосистемы относятся к фотоавтотрофным – имеют ту же принципиальную схему функционирования с передачей энергии по цепи «продуценты – консументы – редуценты», что и естественные наземные экосистемы. Их отличие заключается в том, что состав, структура и функция управляются не естественными механизмами самоорганизации, а человеком. Как пишет Ю.Одум (1986), человек стоит на вершине экологической пирамиды и стремится спрямить пищевые цепи так, чтобы получать максимальное количество первичной (растениеводческой) и вторичной (животноводческой) продукции нужного качества (Одум, 1986).

Кроме того, агроэкосистемы значительно более открыты , чем естественные экосистемы: с растениеводческой и животноводческой продукцией из них происходит отток элементов питания. Некоторое количество элементов питания теряется и за счет вымывания в грунтовые и наземные воды, а также эрозии – смывания или сдувания с полей мелкозема, который является наиболее питательной частью почвы.

Для того чтобы управлять агроэкосистемой (рис. 22), человек затрачивает антропогенную энергию – на обработку почвы и полив, на производство и внесение удобрений и химических средств защиты растений, на обогрев животноводческих помещений в зимнее время и т.д. Количество затрачиваемой антропогенной энергии зависит от избранной стратегии управления. Сельское хозяйство может быть интенсивным (высокие вложения энергии), экстенсивным (низкие вложения энергии) или компромиссным (умеренные вложения энергии). Компромиссная стратегия наиболее целесообразна, т.к. позволяет сочетать достаточно высокий выход сельскохозяйственной продукции с сохранением условий среды и экономией энергии.

Однако даже при интенсивной стратегии управления доля антропогенной энергии в энергетическом бюджете экосистемы составляет не более 1%. Основным источником энергии для «работы» агроэкосистемы является Солнце.

Человек управляет практически всеми параметрами агроэкосистемы:

– составом продуцентов (заменяет естественные растительные сообщества на искусственные посевы сельскохозяйственных растений и посадки плодовых деревьев);

– составом консументов (заменяет естественных фитофагов на домашний скот);

– соотношением потоков энергии по главным пищевым цепям «растение – человек» и «растение – скот – человек» (специализирует хозяйство на производство растениеводческой или животноводческой продукции или на равное соотношение того и другого);

– непроизводительным оттоком вещества и энергии по дополнительным пищевым цепям: «почва – сорные растения», «культурные растения – насекомые-фитофаги», «хозяин (культурные растения, домашние животные) – паразит», т.е. контролирует плотность деструктивной биоты (Swift, Anderson, 1993) – популяций сорных растений, насекомых фитофагов, паразитов;

– уровнем первичной биологической продукции (улучшая условия для развития растений за счет обработки почвы, удобрений и полива).

Человек управляет агроэкосистемой через биологических посредников, к которым относятся культурные растения, сельскохозяйственные животные, почвенная биота и все прочие организмы, населяющие агроэкосистему (насекомые-энтомофаги и опылители, птицы, растения сенокосов и пастбищ и др.). Посредники играют роль биологических усилителей, позволяющих уменьшать затраты антропогенной энергии.

Способы управления агроэкосистемой совершенствовались в течение десяти тысяч лет истории сельского хозяйства (появились мощная сельскохозяйственная техника, минеральные удобрения, пестициды, стимуляторы роста и т.д.), однако возможности управления и сегодня по-прежнему ограничиваются целым рядом условий – экологических и биологических:

– агроресурсами – климатом (количеством осадков и продолжительностью теплого периода), характером почв и рельефом. От этих условий зависит состав видов и сортов возделываемых растений и видов и пород сельскохозяйственных животных;

– потенциалом формирования первичной биологической продукции – верхним пределом эффективности фотосинтеза, который в большинстве случаев не превышает 1% поступающей солнечной энергии (в особо продуктивных посевах в теплом климате на удобрении и поливе – до 2%);

– максимально возможной долей хозяйственно ценных фракций в урожае – хлопкового волокна, клубней, корнеплодов, зерна и т.д. (например, зерна может быть не больше 40% от всей биологической продукции, хотя у пшеницы сорта «Мексикале», выведенного «отцом» зеленой революции Н.Берлоугом, долю зерна удалось довести до 60%);

– неизбежным рассеиванием энергии при переходе ее с первого трофического уровня на второй (при откорме скота) для получения 1 кг вторичной биологической продукции при откорме бройлеров, свиней и коров необходимо затратить (в пересчете на зерно) 2, 4 и 6 кг корма;

– плодовитостью сельскохозяйственных животных: ограничены верхние пределы яйценоскости кур, числа потомства у коров и свиней и т.д.

Биологические ограничители преодолеть невозможно, хотя влияние ресурсных ограничителей может быть ослаблено при интенсивной стратегии управления (высокие дозы удобрений, полив, создание закрытого грунта, террасирование склонов). Однако, как показал опыт зеленой революции 60-х гг. ХХ в., когда на поля пришли сверхурожайные сорта, высокие вложения энергии привели к разрушению агроресурсов – почвы, истощению ресурсов воды и ее загрязнению, снижению биоразнообразия. Таким образом, высокие энергозатраты на управление агроэкосистемой экологически неоправданны. Кроме того, энергия сама по себе дефицитна, т.к. ограничены ресурсы энергоносителей, а производство и транспортировка энергии сопровождаются загрязнением среды.

По этой причине при экологически ориентированном управлении агроэкосистемой и умеренных затратах антропогенной энергии получение достаточно большого количества сельскохозяйственной продукции высокого качества не снижает устойчивости агроэкосистемы (т.е. обеспечивает сохранение ее агроресурсов).

Чтобы вести сельское хозяйство в соответствии с этими требованиями, человек вынужден ограничивать:

– долю пашни (особенно под выгодными, но разрушающими почву культурами – подсолнечник, кукуруза, рис), сохраняя часть агроэкосистемы под многолетними травяными сообществами кормовых угодий или под лесом (естественным или лесопосадками);

– вмешательство в жизнь почвы при ее обработке (использовать не отвальные плуги, а рыхлители) и дозы минеральных удобрений и химических средств защиты растений;

– поголовье скота.

Кроме того, для экологически ориентированного управления агроэкосистемами он должен:

– возделывать виды и сорта культурных растений и разводить породы сельскохозяйственных животных, которые требуют меньших затрат антропогенной энергии (засухоустойчивые виды, не требующие полива, например, сорго; лошадей, которые круглый год содержатся на пастбищах, и т.д.);

– использовать экологичные севообороты с многолетними травами и сидератами (их зеленую массу не убирают, а запахивают в почву как удобрение) для восстановления плодородия почв;

– возделывать поликультуры и сортосмеси, т.е. смеси культурных растений, которые более полно используют агроресурсы и требуют меньших затрат на защиту растений;

– рассредоточивать скот по территории агроэкосистемы (содержать его на небольших фермах), чтобы облегчить внесение навоза на поля.

Агроэкосистемы, которые создаются в соответствии с этими принципами, называются самоподдерживающимися (sustainable). В них обеспечивается предельно возможное сходство с естественными экосистемами.

К сожалению, в настоящее время доля устойчивых агроэкосистем в мире (и особенно в России) мала. Под влиянием сельского хозяйства продолжается разрушение почв, нарушаются гидрологические и гидрохимические характеристики агроландшафтов, снижается биологическое разнообразие.

 

Контрольные вопросы

1. Какую площадь суши планеты занимают агроэкосистемы?

2. Чем отличаются агроэкосистемы от естественных фотоавтотрофных экосистем?

3. Какова доля антропогенной энергии, затрачиваемой на управление агроэкосистемой в ее энергетическом бюджете?

4. Перечислите основные параметры агроэкосистемы, которыми управляет человек.

5. Какие биологические посредники использует человек для управления агроэкосистемой?

6. Перечислите ресурсные ограничители при управлении агроэкосистемой.

7. Расскажите о биологических ограничителях при управлении агроэкосистемой.

8. Что такое компромиссная система управления агроэкосистемой, каковы ее экологические и экономические преимущества?

9. Какие параметры характеризуют устойчивую агроэкосистему?

 

– Конец работы –

Эта тема принадлежит разделу:

Основы общей экологии

Б М Миркин Л Г Наумова.. Основы общей экологии Москва.. От авторов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Сельскохозяйственные экосистемы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОСНОВЫ ОБЩЕЙ ЭКОЛОГИИ
Учебник   Москва Логос Рецензенты: доктор биологических наук, профессор МГУ А.М.Гиляров, доктор биологических наук, профессор Брян

Предыстория
  XVIII-XIX вв. были временем появления тех ростков экологии, которые пышно расцвели в следующем столетии. В эти годы формируются представления об адаптациях (приспособлениях) организ

История
  В ХХ в. теоретический арсенал экологии быстро пополнялся, формировались экологический лексикон и система представлений об особенностях отношений организмов и условий среды на разных

Современность
  Периодом современной экологии считаются последние тридцать лет ХХ в. (Гиляров, 1995, 1998; Wu, Loucks, 1995; Тутубалин и др., 2000). Главные особенности этого периода хорошо выражаю

Ресурсы
Для растений ресурсами являются свет, вода, элементы минерального питания, диоксид углерода, для насекомоопыляемых – насекомые-опылители (ветер как опылитель является фактором-условием). Для животн

Условия
Температура. Этот фактор-условие наиболее важный и сложный по «многоканальности» воздействия на организмы. Температура изменяется в связи с географической широтой, высотой над уров

Комплексные градиенты
  Группа экологических факторов, которые изменяются сопряженно, называется комплексным градиентом. Р.Уиттекер (1980) писал, что экологических факторов, которые бы не о

Основные среды жизни
  Рассмотренные факторы и комплексные градиенты формируют жизненные среды – водную, наземно-воздушную, почвенную. Кроме того, для многих организмов жизненной средой являются другие ор

Принцип экологического оптимума
  На градиенте любого экологического фактора распространение вида ограничено пределами толерантности (рис. 4). Между этими пределами есть отрезок, где условия для конкретного вида наи

Принцип индивидуальности экологии видов
  Каждый вид по каждому экологическому фактору распределен по-своему, кривые распределений разных видов перекрываются, но их оптимумы различаются. По этой причине при изменен

Принцип лимитирующих факторов
  Суть этого принципа, связанного с именем Ю.Либиха, заключается в том, что наиболее важным для распределения вида является тот фактор, значения которого находятся в минимуме или в ма

Определение понятия
  Адаптация – это приспособление организма к определенным условиям среды, которое достигается за счет комплекса признаков – морфологических, физиологических, поведенческих. В р

Адаптивные комплексы
  Как уже отмечалось, адаптация любого организма к условиям среды достигается за счет комплекса признаков, при этом набор адаптивных признаков бывает достаточно разнообразным. Поэтому

Эктотермные и эндотермные организмы
Температура является одним из главных факторов, непосредственно влияющих на все организмы (см. 2.2.2). Верхний предел толерантности к этому фактору составляет 60оС (температура свертыван

Биоритмы
Биоритмы – другой характерный пример адаптаций организмов к изменениям условий среды, которые помогают регулировать температуру тела. Они заключаются в закономерных периодических изменениях

Ксерофиты
Обширная часть суши нашей планеты (степи, прерии, пустыни и др.) характеризуется условиями недостаточного увлажнения. К этим условиям адаптирована большая экологическая группа ксерофитов.

Адаптации животных к дефициту кислорода
Для большинства организмов кислород имеет большое физиологическое значение, и потому уменьшение его концентрации в атмосфере или в воде ведет к формированию специальных адаптаций к дефициту кислоро

Жизненные формы
  Жизненная форма – это внешний облик организма, комплекс морфологических, анатомических, физиологических и поведенческих признаков, в котором отражается его приспособленность к услов

Биологическое разнообразие и его охрана
  За счет того, что разные организмы приспосабливались к разным условиям по-разному, в ходе эволюции сформировалось биологическое разнообразие (биоразнообразие) – совоку

Первичные типы стратегий
Как и r- и К-стратегии, первичные типы стратегий Раменского – Грайма связаны отношениями трейдоффа, т.е. синдромы их адаптивных признаков альтернативны. Тип С (от англ. co

Вторичные типы стратегий и пластичность стратегии
  Многие виды имеют вторичные стратегии, т.е. сочетают признаки синдромов двух или трех первичных типов стратегий Однако, поскольку синдромы виолентности, патиентности и эксплерентнос

Особенности стратегий культурных растений и животных
Сельское хозяйство имеет возраст около 10 тысяч лет, и весь этот период окультуриваемые растения и животные испытывали влияние искусственного отбора, который человек вел, исходя из «эгоистических»

Определение популяции
  Существует два подхода к пониманию популяции: генетический и экологический. При генетическом подходе под популяцией понимают группу особей одного вида, имеющих общий генофонд, т.е.

Конкуренция особей в популяции
  В силу того, что популяции разнообразны, разнообразны и взаимодействия особей, входящих в их состав. Поскольку в большинстве случаев популяции обладают способностью к экспоненциальн

Другие формы взаимоотношений особей в популяции
  Кроме конкуренции возможны и другие формы отношений особей в популяциях – нейтральность (если ресурсов так много и особей так мало, что они практически не мешают друг другу) и полож

Размер популяции и ее структура в пространстве
Размер популяции – это количество входящих в нее особей. Он является результирующей взаимодействия биотического потенциала вида и сопротивления среды (рис. 12).

Гетерогенность популяций
  Любая природная популяция гетерогенна, т.е. состоит из особей, различающихся по фенотипическим и (или) генотипическим признакам. Одна из форм фенотипической гетерогенности

Динамические характеристики популяций
Плотность популяции регулируется четырьмя параметрами: рождаемостью – числом особей, родившихся за определенный промежуток времени. Этот промежуток устанавливается в соответствующем

Кривые выживания
  Для изучения закономерностей динамики популяций составляются таблицы выживания. В этих таблицах строками отражаются классы возраста, а в столбцах показывается число особей, к

Модели роста популяций
  В экологии существует несколько моделей роста популяций (т.е. закономерностей изменения численности популяции при ее росте «от нуля»), главные из них – экспоненциальная и

Возрастной состав популяций
  Кривые выживания могут реализовываться при разном характере динамики популяций: при одновременном «старте» популяций, заселяющих свободное пространство или при постоянном «популяцио

Конкуренция
  Конкуренция – это соревнование организмов одного трофического уровня (между растениями, между фитофагами, между хищниками и т.д.) за потребление ресурса, имеющегося в ограниченном к

Мутуализм
  Мутуализм–это форма взаимоотношений организмов, при которых партнеры получают пользу. Отношениями мутуализма связаны организмы, не конкурирующие за

Комменсализм и аменсализм
  Мутуализм связан плавным переходом с другим вариантом отношений огранизмов – комменсализмом, при котором сотрудничество выгодно только одному из партнеров. При этом на разных

Сигнальные взаимоотношения организмов
  Сигнальные взаимоотношения организмов – это информационные отношения, которые не сопровождаются разделом или передачей от одного организма другому материально-энергетических

Экологическая ниша как многомерное явление
  Экологическая ниша – это совокупность экологических факторов – абиотических и биотических, пространства, ресурсов, (включая ритмику их изменения) – необходимых для существования поп

Различия экологических ниш у животных и растений
  У животных экологические ниши различаются более четко, чем у растений, так как разные животные потребляют разную пищу (биомасса или детрит разных виды растений, насекомых, рыб, птиц

Фундаментальная и реализованная ниши
  Разделение экологических ниш у видов одного типа питания никогда не бывает полным, их ниши перекрываются. Например, заяц может служить пищей и для лисы, и для волка, но волк, кроме

Гильдии
  К одной гильдии (Джиллер, 1988) относятся виды, которые делят один и тот же ресурс (имеют похожие экологические ниши) и потому потенциально могут быть конкурентами. Ниши видов одной

Определение экосистемы
  Понятие «экосистема» предложил А.Тенсли в 1935 г., однако, как отмечает А.М.Гиляров, «…четкого общепринятого определения экосистемы не существует, но обычно считается, что это совок

Функциональные блоки экосистемы
  Несмотря на то, что в составе экосистемы могут быть тысячи видов, по функциональной роли эти виды можно объединить в ограниченное число функциональных типов – продуцентов, консумент

Энергия в экосистеме. Пищевые цепи
  Основу «работы» экосистемы составляют два связанных процесса: круговорот веществ, который осуществляется благодаря деятельности продуцентов, консументов и редуцентов, и протекание ч

Детрит в экосистеме
  Детрит – мертвое органическое вещество, временно исключенное из биологического круговорота элементов питания. Время сохранения детрита может быть коротким (трупы и экскремент

Биологическая продукция и запас биомассы
  Биологическая продукция – скорость накопления биомассы в экосистеме, отражающая способность организмов производить органическое вещество в процессе своей жизнедеятельности.

Состав биоты (биоразнообразие) экосистемы
  Несмотря на то, что для эколога экосистема – это в первую очередь явление функциональное, которое оценивается по интенсивности потока энергии, протекающей через нее, характеру круго

Связь биоразнообразия с функциональными параметрами экосистемы
  Для проблемы охраны биоразнообразия важен вопрос о его связи с функциональными характеристиками экосистем. Есть мнение, что количество видов в экосистемах «избыточно», т.к. число фу

Фототрофные экосистемы океана
  Экосистемы океанов занимают более 70% площади Земного шара. За исключением внутренних морей (по существу, крупных озер – Каспийского, Азовского) эти экосистемы сообщаются между собо

Хемоавтотрофные экосистемы рифтовых зон
  В рифтовых зонах (местах разломов плит литосферы) подводного хребта Тихого океана из расщелин горной породы выделяются горячие воды, насыщенные сероводородом, сульфидами железа, цин

Гетеротрофные и автотрофно-гетеротрофные естественные экосистемы
  Гетеротрофные экосистемы существуют за счет поступления органического вещества извне, т.е. зависят от автотрофных экосистем. Такие отношения можно рассматривать как «комменсализм на

Городские экосистемы
  Городские экосистемы (территории городов и их население) – это гетеротрофные антропогенные экосистемы. Однако в отличие от сельскохозяйственных экосистем, в них нет элементов саморе

Циклические изменения экосистем
  Циклические изменения экосистем очень разнообразны, они могут вызываться абиогенными причинами (в первую очередь изменением условий в суточном, годичном и многолетнем (разногодичном

Первичные автогенные сукцессии и климакс
  Первичные автогенные сукцессии зарастания субстратов, образующихся после таяния ледника на Новой Земле, еще в начале ХIХ столетия описал русский ученый К.Бэр (Трасс, 1976). Тем не м

Модели автогенных сукцессий
  Ф.Клементс считал, что все сукцессии развития экосистем в направлении климакса подчиняются одной модели: улучшаются условия для жизни биоты и потому возрастают биологическая продукц

Гетеротрофные сукцессии
  Движущей силой автотрофных сукцессий является солнечная энергия, усваиваемая растениями-продуцентами и передаваемая по пищевым цепям консументам и редуцентам. Однако, подобно тому,

Вторичные автогенные (восстановительные) сукцессии
  Восстановительные сукцессии по своему характеру мало отличаются от первичных, но, как отмечалось, протекают в экосистемах, которые частично или полностью нарушены внешним воздействи

Аллогенные сукцессии
  Аллогенные сукцессии вызываются факторами, внешними по отношению к экосистемам. Такие сукцессии чаще всего протекают в результате влияния человека, хотя возможны и природные аллоген

Природная эволюция экосистем
  Отличие эволюции экосистем от сукцессий заключается в том, что в ходе эволюции появляются новые комбинации видов и вырабатываются новые механизмы их сосуществования. Итогом природно

Антропогенная эволюция экосистем
  Природная эволюция экосистем протекает в масштабе тысячелетий, в настоящее время она подавлена антропогенной эволюцией, связанной с деятельностью человека. Биологическое время антро

Масштабы процесса адвентивизации биосферы
  В числе адвентивных видов имеются представители практически всех групп органического мира, хотя наиболее изученых адвентивные виды растений. Растения расселялись человеком

Биосфера как оболочка Земли
  Кроме биосферы Зюсс выделил еще три оболочки – атмосферу, гидросферу и литосферу. Атмосфера – самая наружная газообразная оболочка Зе

Распределение водных масс в гидросфере Земли
(по Львовичу, 1986) Часть гидросферы Объем воды, тыс. куб. км % от общего объема вод Мировой океан

Круговорот углерода
Это один из самых важных биосферных круговоротов, поскольку углерод составляет основу органических веществ. В круговороте особенно велика роль диоксида углерода (рис. 23). Запасы «живого»

Круговорот воды
Вода испаряется не только с поверхности водоемов и почв, но и живыми организмами, ткани которых на 70 % состоят из воды (рис. 24). Большое количество воды (около 1/3 всей воды осадков) испаряется р

Круговорот азота
Циркуляция азота в биосфере протекает по следующей схеме (рис. 25): перевод инертного азота атмосферы в доступные для растений формы (биологическая азотфиксация, образование аммиака при гр

Круговорот кислорода
Кислород атмосферы имеет биогенное происхождение и его циркуляция кислорода в биосфере осуществляется путем пополнения запасов в атмосфере в результате фотосинтеза растений и поглощения при дыхании

Круговорот фосфора
О круговороте фосфора за обозримое время можно говорить лишь условно. Будучи гораздо тяжелее углерода, кислорода и азота, фосфор почти не образует летучих соединений – он стекает с суши в океан, а

Ноосфера
  В заключение главы необходимо сказать несколько слов о расхожем (особенно по страницам популярных «зеленых» экологических изданий) термине «ноосфера», который был независимо внедрен

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги