Взаимосвязь экологии, экономики и социальных проблем

 

Экологические показатели рациональности природопользования находят сопоставлением закономерностей функционирования природных экосистем и природно-техногенных систем. Закономерности перехода природных экосистем в природно-техногенные системы отражены в работе [29]. Согласно [29] природно-техногенная система – это совокупность взаимодействующих технических сооружений и природной среды. В указанной работе приведены математические корреляции, описывающие различные состояния (вероятности состояний) в преобразованных человеком экосистемах при различных видах его производственной деятельности. При решении экологических проблем прикладного характера целесообразно использовать рекомендации [29]. Однако мы остановимся на более общих вопросах, связанных с глобальным природопользованием, во избежание вуалирования роли истинно экологического аспекта при организации рационального природопользования.

Универсальной характеристикой различных видов деятельности являются затраты энергии. В этом случае количественные характеристики разных явлений приводят в одних и тех же единицах: Джоулях (Дж) или в Ваттах (1 Вт=1 Дж/с) – в случае непрерывного потока энергии. Понятие энергии связывает воедино все явления природы, природопользовательской деятельности человека, поскольку энергия – это общая количественная мера движения и взаимодействия всех видов материи.

Количественно антропогенные возмущения оценивают как по величине показателя разомкнутости биологических круговоротов (К) (см. формулу (3.11)), так и величиной вложений энергии (энерговложений). Наиболее широко распространены такие показатели, как: «техноэнергетическое давление на территорию» [32], «вложение энергии в земледелие (животноводство)» [33].

Техногенные процессы, приводящие к преобразованию геолого-географического пространства Земли, можно подразделить на три группы [32]: ресурсодобыча и переработка, выработка и потребление энергии, запуск ракет и ядерные взрывы.

Значительная доля энергетических затрат человечества приходится на перемещение и преобразование вещества планеты. По оценкам 1985 года, ежегодно перемещается нефти и природного газа – около 4·109 т; углей – 2·109 т; горной породы – 20·109 т; строительная индустрия увеличивает скорость эрозии в 200-500 раз [32]. Извлечение для различных нужд подземных вод происходит значительно быстрее, чем их естественное восстановление. Изъятие из литосферы и закачка в нее растворимых веществ в 2-3 раза превышает подземный химический сток в зоне интенсивного водообмена. Суммарные отходы городов мира (примерно 3·109 т твердых; 5·108 м3 жидких и 109 т аэрозолей в год) превышают выбросы вулканов (за последние 400 лет 578 активных вулканов ежегодно продуцируют в сумме около 2,5·109 т лавы, пепла, газов и паров). Добыча и переработка ресурсов сказывается на физико-химическом состоянии геосферы и структуре геофизических полей – электрического, магнитного, гравитационного.

Выработка электроэнергии к 1990 г. достигла около 3,2·1011 Вт, оказывая огромное влияние на электромагнитное поле Земли [32]. Передача электроэнергии и электропотребление изменили характер электромагнитных бурь и магнитосферных возмущений, около 30% которых связывают с функционированием линий электропередачи (ЛЭП). Воздействие на геофизические поля технических средств производства электромагнитной энергии может вызвать региональные и глобальные перестройки литосферно-ионосферных связей. Все это приводит к появлению новообразований в лито-, гидро- и атмосфере и в происходящих в них процессах; что нарушает устоявшееся динамическое равновесие и влияет на устойчивость экологических систем.

Естественным результатом человеческой деятельности является производственно-преобразованная среда обитания, сформированная в результате многократного пропускания через промышленные процессы вещества лито-, гидро- и атмосфер и частичная замена естественных циклов техногеохимическими. Одна из главных причин нарушения устойчивости природных экосистем – несоответствие скорости естественных и антропогенно-стимулированных массоэнергопотоков. Это обусловливается искусственным созданием разнообразных контрастов, градиентов и потенциалов – источников перетоков вещества, энергии и информации; нарушающих эволюционно установившийся обмен в природных экологических системах. Природные экосистемы Земли интенсивно заменяются природно-техногенными. Изменение состава, свойств и энергетики биосферы может привести к двум альтернативным результатам: 1) катастрофическому ее разрушению и 2) к эволюционному преобразованию в новое качество, устойчивое в изменившихся условиях. Это необходимо учитывать при оценке устойчивости отдельных экосистем и при прогнозах катастрофических явлений. Одним из критериев таких оценок служит техноэнергетическое давление на территорию, которое измеряют в Дж/км2·с или Вт/км2. Согласно [32] в России наиболее нагруженными территориями являются: центр европейской части, среднее поволжье (нагрузка более 8·104 Вт/км2); наименее нагружены промышленные районы Южного Урала и юга Западной Сибири (здесь нагрузка менее 8·102 Вт/км2). Критические (предельные) значения данного показателя сегодня не определены.

Пороговая величина вложения энергии в земледелие найдена и согласно [33] составляет для средних географических широт 15·109 Дж/га×год (4,8·104 Вт/км2). При превышении затрат энергии этой величины начинаются вредные для среды последствия: эвтрофикация водоемов, усиленный смыв химических соединений в реки, интенсивная эрозия и т.п. Поясним, вложение энергии в земледелие – это дополнительное привнесение энергии на единицу обрабатываемой или иным образом эксплуатируемой (выпас, сенокос и т.п.) территории путем тягловых усилий (распашка, боронование, дискование и т.д.), внесения органических и минеральных удобрений, применения ядохимикатов, управления потоками пасущихся животных, сбора урожая и других агротехнических и агрохимических мероприятий. Затраты энергии в высокоинтенсивном земледелии развитых стран составляют (15-20)·109 Дж/га·год, что превышает допустимый предел. Интересно, что средний приход энергии от Солнца в умеренных широтах равен (48-61)·1012 Дж/га·год и величина 15·109 Дж/га·год относительно мала.

На основании численного значения предельного вложения энергии в земледелие в умеренных широтах (15·109 Дж/га·год) и найденного при этом значения разомкнутости круговоротов биогенов – порядка нескольких десятков процентов [15] (зададимся величиной 40%),при фоновом уровне разомкнутости в сотые доли процента [15], можно определить, что привнесение антропогенной энергии в природную экосистему до (15·109·0,01):40=3,8·106 Дж/га·год, не нарушает ее саморегуляции, т.е. система является по сути невозмущенной деятельностью людей. Такой порядок антропогенных вложений допустим для национальных парков в средних географических широтах. Однако из изложенного в разделе 3 следует, что величина 15·109 Дж/га·год недопустимо велика для тропических районов. Критический барьер здесь значительно ниже. Аналогично для северных, полярных районов. Ю.Н. Голубчиков отмечает [13]: «Трудности полярного земледелия коренятся в применении на малоустойчивых северных почвах структуроразрушающей мощной техники. Раньше земледельцы шли пахать, лишь только чуть оттаивали и обсыхали поля. Главным было уловить длинный полярный майско-июньский день, богатый всем спектром солнечных лучей в сочетании с биоэнергетически активизирующей растения талой водой. Пахали поверхностно – соха не поднимает пласт глубже 12 см. Ниже идет подзолистый горизонт и, если вывернуть его на поверхность – можно получить пустые закрома. Теперь же ждут, пока смогут пройти трактора, а сеять начинают еще позже… В результате поле становится подобием дороги: в сухую погоду – сплошная пыль, … во влажную – грязь. Вот и не успевает вызревать урожай». По мнению Ю.Н. Голубчикова перевод народов Крайнего Севера на оседлый образ жизни и создание стационарных поселений подрывает кормовую базу оленеводства и обусловливает здесь нерациональное природопользование. При этом по биосферной значимости стада российских оленей ни в чем не уступают известным популяциям крупных травоядных национальных парков Африки. В связи с переводом северных кочевников на оседлость вместо небольших колхозов, дававших неплохую прибыль, появились крупные убыточные поселки. Интенсивный выпас домашнего скота в их окрестностях подорвал кормовую базу оленеводства. Численность оленьего стада неуклонно сокращается, а себестоимость мяса – растет.

Рассматривая природопользование в историческом аспекте, следует отметить неизбежность роста энергозатрат, который отражен в законе падения природно-ресурсного потенциала: в рамках одной общественно-экономической формации (способа производства) и одного типа технологий природные ресурсы делаются все менее доступными и требуют увеличения затрат труда и энергии на их извлечение и транспортировку [33].

Примерами сказанного может служить минеральное сырье, истощающееся в густо населенных и комфортных областях планеты, добываемое из все более глубоких пластов; сельскохозяйственное производство; гидрогеологическое хозяйство, страдающее от все более глубокого залегания вследствие истощения подземных вод и т.д.

Также сформулирован закон снижения энергетической эффективности природопользования: с ходом исторического времени при получении из природных систем полезной продукции на ее единицу в среднем затрачивается все больше энергии [33].

Увеличиваются и энергетические расходы на одного человека. Расход энергии на одного человека (в МДж/сут) в каменном веке был 16, в аграрном обществе порядка ~49; в индустриальном ~280, а в передовых развитых странах настоящего времени ~103 МДж/сут, т.е. примерно в 63 раза больше, чем у наших далеких предков [33]. В среднем общее энергопотребление одного человека на рубеже ХХ-ХХI в.в. составило 2,5·103 Дж/с или 2,5 кВт, включая энергию потребленной пищи, затраты на хозяйственные и социальные нужды. С начала ХХ в. количество энергии, затрачиваемое на 1 единицу сельскохозяйственной продукции в развитых странах мира возросло в 8-10 раз; на 1 единицу промышленной продукции – в 10-12 раз. Общая энергетическая эффективность сельскохозяйственного производства (соотношение вкладываемой и получаемой с готовой продукцией энергией) в промышленно развитых странах примерно в 30 раз ниже, чем при примитивном земледелии. Энергопотребление в сельском хозяйстве США с 1950 до 1970 г. увеличилось в 6 раз. В Испании за период с 1950 до 1978 г. потребление энергоресурсов в сельском хозяйстве возросло в 29 раз, а на 1 затраченную килокалорию в земледельческом секторе вместо 6,1 ккал (в 1950 г.), получили всего 0,7 ккал (в 1978 г.) полезной продукции, т.е. почти в 9 раз меньше [33].

Падение энергетической эффективности сельскохозяйственного производства объясняется заменой природного плодородия почв их искусственным плодородием (внесением удобрений) и необходимостью дополнительного эффекта для повышения урожая, что требует дополнительного вложения энергии. В ряде случаев увеличение затрат энергии на удобрение и обработку полей в десятки раз приводит к повышению урожайности лишь на 10-15%. Необходимо, параллельно с улучшением агротехники, учитывать общую экологическую обстановку, налагаемые ею ограничения. При индустриальном сельском хозяйстве: эксплуатация закрытого грунта, выращивание бройлеров и т.п. – энергетическая эффективность колеблется в пределах от 1:0,14 (производство яиц) до 1:0,0033 (салат из теплиц). Следует ожидать, что сближение энергетических показателей открытого и закрытого грунта приведет к полному вытеснению первого вторым, т.к. закрытый грунт более рентабелен экономически: меньше потери воды и других ресурсов, а экологически он позволяет организовать условно-замкнутое сельскохозяйственное производство. Последнее ведет к снижению загрязнения окружающей природной среды и увеличению числа невозмущенных хозяйственной деятельностью территорий.

Важным показателем эффективности функционирования природно-продуктивной системы является природоемкость (е) [12]. Этот показатель хорошо характеризует тип и уровень эколого-экономического развития, являясь базовым в экономике природопользования. Величина природоемкости зависит от эффективности использования природных ресурсов во всей цепи, от исходных природных ресурсов, первичной продукции (полученной на их основе) до конечной стадии технологических процессов, связанной с преобразованием природного вещества.

Различают два уровня показателей природоемкости [12]:

- макроуровень, уровень всей экономики;

- продуктовый, отраслевой уровень.

На макроуровне при расчете природоемкости учитывают макроэкономические показатели: затраты природных ресурсов или одного ресурса (N) на единицу валового внутреннего продукта (ВВП); валового национального продукта (ВНП) и т.п. Измерение этих показателей может производиться как в стоимостной форме (руб./руб.), так и в натурально-стоимостной (т/руб. и т.д.). Например, на макроуровне показатель природоемкости валового внутреннего продукта (ВВП) можно охарактеризовать соотношением:

(4.2)

Наиболее обобщенный показатель природоемкости представляет собой отношение стоимостной оценки всех используемых в сферах производства и потребления природных ресурсов к макроэкономическому показателю (ВВП или другому). В качестве временного интервала можно выбрать год (для стабильных производств) или более продолжительные периоды времени (например, 5 лет для сглаживания годовых разбросов в урожайности в аграрном секторе). Отметим, нигде в мире нет адекватной стоимостной оценки природных ресурсов. Общим для условий централизованно планируемой системы, и для рынка является недооценка природных ресурсов, занижение их цены. Таким образом, показатель природоемкости на макроуровне всегда заведомо занижен.

В качестве частных показателей природоемкости на макроуровне для ВВП, национального дохода и пр. можно рассматривать показатели энергоемкости, металлоемкости, материалоемкости и т.д. В аграрном секторе это может быть количество сельскохозяйственных угодий, необходимых для производства 1 рубля сельскохозяйственной продукции.

Уровень продуктивный или отраслевой природоемкости определяется затратами природного ресурса (N) в расчете на единицу конечной продукции (V), произведенный на основе этого ресурса (например, количество земли, требуемой для производства 1 т зерна; количество леса, требуемого для производства 1 т бумаги).

(4.3)

Фактически это оценка эффективности функционирования природно-ресурсной вертикали, соединяющей первичный ресурс с конечной продукцией. Чем меньше здесь показатель природоемкости, тем эффективнее процесс преобразования природного вещества в продукцию, меньше отходы и загрязнения.

Основные достоинства показателя природоемкости проявляются при его измерении в динамике или при сравнении с другими странами, экономическими структурами, технологиями и пр.

Из всего изложенного выше следует, что наиболее важным с экологических позицийявляется анализ затрат энергии при производстве различных видов продукции. В начале 80-х годов ХХ столетия удельные затраты энергии на производство единицы ВНП в ходе решительных мер по экономии энергии в промышленно развитых странах сократились на 15%. В период с 1980 по 1990 г. ВНП в развитых странах вырос на 20%, а потребление энергии – лишь на 2% (результат устранения неоправданных потерь энергии). Однако, в это же время в развивающихся странах расход энергии возрос на 24% и составил 10% от общемирового (против 5% в начале периода), т.е. имел тенденцию к быстрому росту. Несмотря на ожидаемое снижение потребления энергии (в кг условного топлива) на 1 денежную единицу ВНП, общее увеличение ВНП и абсолютно необходимое возрастание валового национального дохода в развивающихся странах приведут к дальнейшему росту абсолютного (глобального) энергопотребления, а падение природно-ресурсоного потенциала – к росту энергетических затрат. Таким образом рост антропогенных возмущений в биосфере неизбежен. И тем актуальнее задача снижения численности народонаселения.

В таблице 4.3. приведен сравнительный анализ эффективности использования энергетических ресурсов в различных странах в конце 90-х годов ХХ столетия [12].