Легированных сталей

В разделе 2.1.3 отмечалось, что основой классификации углеродистых сталей по назначению (конструкционные и инструментальные) является зависимость их механических свойств от содержания углерода (рис. 2.1.3). Эта тенденция сохраняется в общих чертах и для подавляющего большинства, т.е. наиболее дешевых, мало – и среднелегированных сталей (это стали перлитного класса, см. разд. 2.3.1).

Высокоуглеродистые ( ≥0,7 %С) легированные стали – инструментальные, стали с меньшим содержанием углерода - конструкционные.

Наиболее многочисленные группы конструкционных сталей – это цементуемые(0,10…0,25 %С)иулучшаемые(0,30…0,50 %С).

Цементуемые стали применяются в основном для деталей типа шестерен, которые после цементации (диффузионного насыщения поверхности изделия углеродом), закалки и низкого отпуска приобретают высокую твердость и износостойкость наружного слоя (структуру высокоуглеродистого мартенсита) и сохраняют хорошую вязкость сердцевины, препятствующую хрупкому разрушению зубьев шестерни.

Улучшаемыестали используются для ответственных нагруженных изделий, работающих при динамических нагрузках, которые для получения оптимального сочетания прочности и ударной вязкости подвергают улучшениюзакалке и высокому отпуску (см. разд. 2.2.2).

В марках конструкционных сталей число в начале марки указывает содержание углерода в сотых долях процента (как в качественных углеродистых конструкционных сталях). Далее следуют легирующие элементы, которые обозначаются русскими буквами, обычно – первыми в названии элемента. Например, Cr буквой Х, Ni – Н, Ti – Т, V– Ф, Co– К, Mo – М, W– В, но есть и исключения: В – Р, Al – Ю, Si – С, Mn – Г; буква А в конце марки означает сталь высокого качества (в таких сталях ограничено количество вредных примесей S и Р ≤ 0,025 % каждого из этих элементов).

Цифры после каждой буквы указывают содержание данного элемента в процентах, если цифра отсутствует, то среднее количество этого элемента1 %.Например, в стали 18Х2Н4МА – в среднем 0,18 % С; 2 % Cr, 4 % Ni, 1% Мо, ≤ 0,025 % S и ≤ 0,025 % Р.

В таблице 2.3.1 для примера приведены химический состав, механические свойства и критический диаметр Dкр (соответствует максимальному рабочему сечению детали) некоторых цементуемых и улучшаемых конструкционных сталей (ГОСТ4543–71). Механические свойства цементуемых сталей даны после закалки и низкого отпуска, улучшаемых – после закалки и высокого отпуска (т.е. в улучшенном состоянии).

Помимо цементуемых и улучшаемых к конструкционным принадлежат также:

1)строительные(низколегированные )стали, содержащие до 0,2 %С и небольшое количество недорогих легирующих элементов (обычно до 2...3 %Мn и Si), 09Г2, 09Г2С, 10Г2С1, 17ГС и др. Они используются в машиностроении, строительстве, магистральных газо – и нефтепроводах и т. п.; обладают хорошей свариваемостью, малой склонностью к хрупким разрушениям, хладостойкостью. Изделия из этих сталей обычно не подвергаются термической обработке.

2)рессорно-пружинные стали содержат 0,5…0,7 %С и небольшое количество легирующих элементов (Mn, Si, V); например, 50С2, 60СГ, 60С2ХФА, 70С3А и др. После закалки и среднего отпуска (на структуру троостит отпуска) приобретают высокий предел упругости и предел текучести σ0,2 до

1200…1700 МПа; применяются в транспортном и станкостроении для рессор, пружин, различных упругих элементов.

3) подшипниковые стали содержат 0,95…1,05 %С, 0,4…1,7 %Cr, 1,7 %Mn, 0,85 %Si; например, ШХ6, ШХ15, ШХ15ГС и др. Буква Ш обозначает шарикоподшипниковую сталь, цифры – содержание Cr в десятых долях процента.

После закалки и низкого отпуска эти стали имеют структуру мартенсита с включениями мелких вторичных карбидов, обладают высокой твердостью (62…64 HRCэ) и износостойкостью; применяются для деталей подшипников качения.

Основная цель легирования этих сталей – повышение прокаливаемости (см. разд. 2.3.2). Чем больше легирующих элементов, тем больше критический


Таблица 2.3.1

Химический состав, механические свойства и критический диаметр

некоторых конструкционных легированных сталей

Марка стали Содержание элементов, % Механические свойства Dкр, мм
С Mn Cr Ni Другие элементы σ0,2, МПа σв, МПа δ, % Ψ, % ΚСU, МДж/м2
ЦЕМЕНТУЕМЫЕ
18ХГТ 0,17-0,23 0,8-1,1 1,0-1,3 - 0,03-0,09 Ti 0,8
20ХГР 0,18-0,24 0,7-1,0 0,75-1,05 - - 0,8 40-60
25ХГМ 0,23-0,29 0,9-1,2 0,9-1,2 - 0,2-0,3 Mo 0,8 60-80
12Х2Н4А 0,09-0,15 0,3-0,6 1,25-1,65 3,25-3,65 - 0,9 100-120
18Х2Н4МА 0,14-0,20 0,25-0,55 1,35-1,65 4,0-4,4 0,3-0,4 Mo 1,0 ≥ 120
УЛУЧШАЕМЫЕ
40Х 0,36-0,44 0,5-0,8 0,8-1,1 - - 0,6 25-35
30ХГС 0,28-0,35 0,8-1,1 0,8-1,1 - 0,9-1,2 Si 0,4 50-75
40ХН2МА 0,37-0,44 0,5-0,8 0,6-0,9 1,25-1,65 0,15-0,25 Mo 0,8 75-100
38ХН3МФА 0,33-0,4 0,25-0,5 1,2-1,5 3,0-3,5 0,35-0,45 Mo 0,1-0,18 V 0,8 ≥ 100

диаметр закаливаемых деталей, тем более крупный подшипник может быть изготовлен из данной стали.

Помимо рассмотренных выше наиболее распространенных групп сталей к конструкционным относятся также высокопрочные, износостойкие, коррозионностойкие, жаростойкие и жаропрочные стали, а также стали (и железосодержащие сплавы) с особыми физическими свойствами. С этими материалами (многие из них встречаются в контрольных работах) можно ознакомиться в рекомендуемой учебной литературе [1…4, 8].

Теперь – несколько слов о классификации и маркировке инструментальных легированных сталей. Выше уже отмечалось, что к инструментальным углеродистым и легированным сталям относятся в основном стали с большим содержанием углерода ( ≥ 0,7 %С), поскольку после закалки и низкого отпуска они должны обладать высокой твердостью (60…65 HRCэ) и износостойкостью. Это стали для режущего и измерительного инструмента (ГОСТ 5950–2000) большинство из них содержит небольшое количество легирующих элементов (в сталях повышенной прокаливаемости до ≈ 5 %). Цифры в начале марки этих сталей показывают содержание углерода в десятых долях процента, например, в марках 9ХС, 11ХФ, 13Х – 0,9; 1,1 и 1,3 %С соответственно. Если среднее содержание углерода ≈ 1 %, то цифра в начале марки обычно отсутствует Х, ХВГ, ХВ4.

Наилучшими свойствами в группе сталей для режущего инструмента обладают быстрорежущие стали (ГОСТ 19265–73). В результате сильного легирования карбидосодержащими элементами – (W, Mo, Cr, V) они приобретают высокую теплостойкостьспособность сохранять высокую твердость (до 58 HRCэ) и износостойкость при длительном нагреве до ≈ 620 оС.

В марках этих сталей (Р18, Р6М3, Р6М5, Р9К5,…) после буквы Р (от англ. rapid – быстрый, скорый) число показывает содержание основного легирующего элемента W в процентах.

В результате сильного легирования в закаленных быстрорежущих сталях остается много (до 30 %) остаточного аустенита, поэтому для его устранения используют обработку холодом или трехкратный отпуск при t ≈ 560 оС (см. раздел 2.3.2). Твердость быстрорежущих сталей после такой термообработки 63…65 HRCэ. Инструмент из этих сталей используют для обработки на высоких скоростях резания, а также труднообрабатываемых материалов (например, высоколегированных коррозионностойких и жаропрочных сталей и сплавов с аустенитной структурой).

Помимо сталей для режущего и измерительного инструмента по назначению различают штамповые стали для холодного и горячего деформирования металлов.

Для холодного деформирования в первую очередь требуется высокая твердость инструмента, поэтому используются в основном те же стали, что и для режущего инструмента (ГОСТ 5950-2000) с содержанием углерода ≈ 1 % (Х, ХВСГ, Х6ВФ, Х12М), имеющие твердость 60…63 HRCэ после закалки и низкого отпуска. В тех случаях, когда от инструмента требуется повышенная вязкость (ударные нагрузки) используют стали с меньшим (0,5…0,7 %) содержания углерода (6ХВ2С, 7ХГ2ВМ).

В гораздо более тяжелых условиях работают стали штампов горячей обработки давлением.Их структуры, механические и эксплуатационные свойства не должны изменяться (ухудшаться) при нагревании до 400…600 оС. Помимо тепло – и окалиностойкости эти стали должны обладать разгаростойкостьюустойчивостью к образованию поверхностных ("разгарных") трещин, стимулируемых многократными циклами нагрев « охлаждение. Комплекс этих свойств достигается применением сталей с пониженным содержанием углерода (0,3…0,6 %С) – 3Х2В8Ф, 4Х5В2ФС, 5ХНМ, обрабатываемым на структуру троостита или сорбита отпуска (температура отпуска » 500…630 оС) и твердость 42…50 HRCэ.

В заключение отметим, что данный раздел 2.3 содержит многочисленные примеры влияния химического состава (легирования) на структуру и свойства сплавов.

Внимание!

Освоив этот раздел[26] (раздел 2.3) и не забыв, конечно, основные положения разделов 2.1 и 2.2, Вы делаете решительную заявку на вступление в «Клуб знатоков металловедения», способных выбирать стали (главные материалы промышленности!) для изделий различного назначения. В этом Вы убедитесь, ответив по традиции на вопросы для самопроверки.