Расчет моды и медианы

Расчет моды и медианы. Особым видом средних величин являются структурные средние.

Они применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана. Мода - это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту. В интервальном ряду распределения мода находится по следующей формуле: (4) , где: минимальная граница модального интервала; - величина модального интервала; частоты модального интервала, предшествующего и следующего за ним Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при изучении покупательского спроса, регистрации цен и т.д. Медиана - варианта, находящаяся в середине ряда распределения. Медиана делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значениями признака больше медианы. В случае если вариационный ряд имеет число значений вариант четное, то расчет медианы производится по следующей формуле: (5) , где - варианты, находящиеся в середине ряда В интервальном ряду распределения медиана рассчитывается следующим образом: (6) , где: - нижняя граница медианного интервала; - величина медианного интервала; - полусумма частот ряда; - сумма накопленных частот, предшествующих медианному интервалу; - частота медианного интервала.

Структурные средние величины (мода и медиана) имеют довольно большое значение в статистике и широкое применение. Мода является именно тем числом, которое в действительности встречается наиболее часто.

Медиана имеет важные свойства для анализа явлений: она обнаруживает типичные черты индивидуальных признаков явления, и, вместе с тем, учитывает влияние крайних значений совокупности. Медиана находит практическое применение в маркетинговой деятельности вследствие особого свойства – сумма абсолютных отклонений чисел ряда от медианы есть величина наименьшая: Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного расположения частот вариационного ряда. 1.5.