рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

КИТАЙСКИЕ ТЕОРЕМЫ ОБ ОСТАТКАХ

КИТАЙСКИЕ ТЕОРЕМЫ ОБ ОСТАТКАХ - Домашнее Задание, раздел Домостроительство, ЛЕКЦИИ И ДОМАШНИИ ЗАДАНИЯ ПО КУРСУ ТОКБДИСКРЕТНАЯ МАТЕМАТИКА ВВЕДЕНИЕ В ДИСКРЕТНУЮ АЛГЕБРУ Теорема 2.3.8. Для Заданного Множества Попарно Взаимно Пр...

Теорема 2.3.8. Для заданного множества попарно взаимно простых многочленов т1 (х), m2(х), ..., тk (х) и множества многочленов с1 (х), с2 (х), ..., сk (х), таких, что deg ci(x) < deg mi(x), система сравнена и

с1 (х) = с (х) (mod mi(x) i = 1, ..., k, имеет не более одного решения с (х}, удовлетворяющего условию

k

dtg c(x<∑deg mi (x.).

i=1

Доказательство.. Предположим, что имеются два решения, а именно

c(x) = Qi(x) mi(x) +ci(x)

и

c*(x) = Qi*(x) mi(x) +ci(x) ,

так что разность с(х) — с*(х) кратна многочлену т{ (х) для каждого i. Тогда многочлен с(х) с*(х) кратен и многочлену ∏ki=1 mi(x), причем

deg [с(х) с* (х)]<deg [ ∏k mi(x) ] ,

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИИ И ДОМАШНИИ ЗАДАНИЯ ПО КУРСУ ТОКБДИСКРЕТНАЯ МАТЕМАТИКА ВВЕДЕНИЕ В ДИСКРЕТНУЮ АЛГЕБРУ

ЛЕКЦИИ И ДОМАШНИИ ЗАДАНИЯ ПО КУРСУ ТОКБДИСКРЕТНАЯ МАТЕМАТИКА... ДЛЯ СТУДЕНТОВ ДНЕВНОГО ОТДЕЛЕНИЯ СПЕЦИАЛЬНОСТИ КИРИШКИЙ ФИЛИАЛ... ВВЕДЕНИЕ В ДИСКРЕТНУЮ АЛГЕБРУ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: КИТАЙСКИЕ ТЕОРЕМЫ ОБ ОСТАТКАХ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Доказательство.
(1). аО = а (0 + 0) = аО + аО. Вычитая из обеих частей равенства аО, получаем 0 = аО. Вторая часть утверждения (1) доказывается аналогично, (2). О = аО = а (b — b) = аb

Теорема 1.2.4.
(1) Множество единиц кольца образует группу относительно умножения в кольце (2) Если с = аb и с — единица, то а имеет правый обратный, а b — левый о

ВЕКТОРНЫЕ ПРОСТРАНСТВА
Известный пример векторного пространства дает трехмерное евклидово пространство, фигурирующее во многих физических задачах. Его обобщением является n-мерное векторное пространство над полем веществ

ЛИНЕЙНАЯ АЛГЕБРА
  Широко используемые разделы прикладной математики — линейная алгебра, в частности теория матриц, — обычно изучаются только для поля вещественных чисел и поля комплексных чисел, одна

Теорема 12.56.3.
10) Если все элементы некоторой строки квадратной матрицы равны нулю, то определитель этой матрицы равен нулю., 2П) Определитель матрицы равен определителю транспони­рованной мат

КОЛЬЦО ЦЕЛЫХ ЧИСЕЛ
| Множество всех целых чисел (положительных, отрицательных и нуля) образуют кольцо относительно обычных операций сложе­ния и умножения. Это кольцо принято обозначать через Z. В данном пара

Теорема 2.1.2.
1. Rd(a+b)=Rd{ Rd (a) + Rd (b) } 2 . Rd(a*b)=Rd{ Rd (a) *Rd (b

КОНЕЧНЫЕ ПОЛЯ, ОСНОВАННЫЕ НА КОЛЬЦЕ ЦЕЛЫХ ЧИСЕЛ
Имеется очень важная конструкция, позволяющая по заданному кольцу построить новое кольцо, называемое кольцом отношений. В случае произвольного кольца для построения кольца отноше­ний строятс

КИТАЙСКИЕ ТЕОРЕМЫ ОБ ОСТАТКАХ
Когда можно однозначно определить целое число, если заданы только его вычеты по модулям нескольких целых чисел? Ответ на этот вопрос был известен еще в древнем Китае. Китайская теорема об остатк

КОЛЬЦА МНОГОЧЛЕНОВ
Многочленом над полем GF(q) называется математическое выра­жение f(x)= fn-1 xn-1+fn-2 xn

Теорема 2.3.4.
(1) Rd(х)[a(х)+b(x)]= Rd(х)[a(х)]+ Rd(х)[b(х)] , (2 ) Rd(х)

КОНЕЧНЫЕ ПОЛЯ, ОСНОВАННЫЕ НА КОЛЬЦАХ МНОГОЧЛЕНОВ
Конечные поля можно построить из колец многочленов таким же образом, каким были построены поля из кольца целых чисел. Пусть имеется кольцо многочленов F [х] над полем F. Так же, как б

Степень Простые многочлены
2 x2 +x +1 3 x3 +x +1 4 x4 +x +1 5 x5 +x2 +1 6 x6 +x +1 7 x7 +x3

ПРИМИТИВНЫЕ ЭЛЕМЕНТЫ
В предыдущем параграфе было построено поле GF(4). На рис. 2.2 видно, , за исключением нуля, все элементы поля могут быть представлены в виде степени элемента х. Опред

СТРУКТУРА КОНЕЧНОГО ПОЛЯ
Ранее в данной главе мы изучали, как строить поле. Предполагая, что можно найти простой многочлен степени п над полем άGF (q), мы научились строить конечное поле с qп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги