рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общие соображения о природе тока.

Общие соображения о природе тока. - раздел Право, ГЛАВА III Электрическое смещение В Настоящей Главе Мы В Самых Общих Чертах Ознакомимся С Современным Со...

В настоящей главе мы в самых общих чертах ознакомимся с современным состоянием вопроса о природе электрического тока. Хотя вопрос этот по существу относится к области чистой физики, однако, электрический ток представляет собою столь основное явление во всех случаях практических приложений электрической энергии, что мы считаем целесообразным остановиться на рассмо­трении вопроса о том, каков вероятный механизм процесса, назы­ваемого электрическим током. Некоторое представление об этом оказывается особенно полезным, когда приходится углубиться в рассмотрение условий функционирования сложных электротехнических схем, аппаратов и машин, в частности, когда речь идет о каких-либо новых комбинациях этого рода.

Необходимо прежде всего совершенно отчетливо указать, что до настоящего времени науке еще не удалось выработать вполне законченной картины электромагнитного процесса, происходящего в цепи электрического тока. В силу отмеченной уже выше (см. §§ 45 и 57) нашей неспособности охватить электромагнитный процесс как одно целое, мы по необходимости весьма часто сосре­доточиваем внимание то на одной, то на другой стороне этого сложного явления, в связи с чем и возникло несколько точек зре­ния на природу электрического тока. Из всего сказанного должно быть ясно, что эти различные и, на первый взгляд, как будто бы не имеющие между собою ничего общего точки зрения в действи­тельности не противоречат одна другой и не исключают Друг друга, освещая лишь различные стороны одного и того же явления.

Задачей будущих исследователей в этой области необходимо считать именно согласование различных точек зрения на природу тока и увязку их в одно стройное целое, охватывающее все сто­роны электромагнитного процесса, воспринимаемого нами как элек­трический ток.

 

 

Кинетический характер процесса, имеющего место в цепи тока, безусловно признается всеми, и это обстоятельство является связы­вающим звеном между отдельными взглядами по вопросу о природе электрического тока. Кажущиеся разногласия существуют лишь по поводу того, что именно движется и как движется.

В первоначальной стадии представление об электрическом токе ограничивалось утверждением, что по проводнику течет „электри­чество". При этом речь шла исключительно о том, что происходит внутри проводника. С этой точки зрения сущность электрического тока состоит именно в движении электричества внутри проводника, в протекании его через любое поперечное сечение проводника. Подобное представление о природе тока наложило отпечаток на всю терминологию, которою мы пользуемся при описании явлений электрического тока. Рассматриваемая точка зрения выработалась и царила безраздельно в то время, когда электричество мыслилось как самодовлеющая физическая сущность, подобная некоторой по­движной жидкости, могущей занимать определенный объем или рас­полагаться на поверхности так называемых заряженных тел. Пред­полагалось, что электрическая жидкость, сосредоточенная в одном месте, может как-то взаимодействовать через пустое пространство с другой порцией электрической жидкости, сосредоточенной на некотором расстоянии где-либо в другом месте. Как известно, идея об электрической жидкости претерпела целую эволюцию, и в конце концов наука остановилась на признании двух самостоятельных видов электрических жидкостей, противоположных по своим свой­ствам (положительное и отрицательное электричество). Гипотеза об электрических жидкостях или массах в своей примитивной форме совсем не считается с чем бы то ни было вне объема, занятого „электричеством". Соответственно этому и при изучении процесса электрического тока сначала не усматривалось ничего характерного в пространстве, окружающем проводник, по которому течет ток.

Со времени Фарадея обращено внимание на особенное зна­чение промежуточной среды во всех электрических и магнитных явлениях. Стало ясно, что электрическая жидкость, электрическая масса или электрический заряд представляет собою лишь одну сторону того, что можно назвать электрическим состоянием какой-либо системы и что вообще говоря, необходимо рассматривать как неделимую совокупность, элементами которой являются электри­ческая деформация диэлектрика н электрические заряды. Электри­ческий заряд, с точки зрения Фарадея и Максвелла, представляет собою не что иное, как границу особой деформации диэлектрика или, вернее сказать, центр, вокруг которого диэлектрическая среда некоторым образом деформирована. В то же время работы Фара­дея и Максвелла утвердили признание исключительной роли среды в области магнитных явлений и выявили совершенную условность старых представлений о магнитных массах (см. § 31). Как-раз в течение первого периода научной деятельности Фарадея был сделан ряд важных открытий, обративших всеобщее внимание на то, что происходит в пространстве вокруг проводника с током.

 

 

В 1820 году Эрстед открыл влияние тока на расположенную вблизи магнитную стрелку и Араго удалось намагнитить электрическим током железо и сталь. В том же 1820 году Ампер доложил во Французской академии наук о своих наблюдениях над действием токов на токи и магнитов на токи. В 1831 году Фарадей открыл явление электромагнитной индукции тока. Все эти открытия пока­зали, что в пространстве вокруг проводника с током существует магнитное поле, представляющее собою неотъемлемое внешнее дополнение к тому движению электричества, которое происходит внутри проводника. С совершенною несомненностью в конце концов выяснилось, что тока, не сопровождаемого магнитным полем, никогда не бывает. Можно себе представить, что электрический ток, проте­кающий по некоторой замкнутой цепи, не сопровождается выделе­нием джоулева тепла (в случае сверхпроводника), не сопровождается никакими электролитическими действиями и, вообще, не сопрово­ждается какими бы то ни было так называемыми „внутренними" действиями, но в настоящее время нельзя себе представить элек­трического тока, не связанного с магнитным полем. Одним словом, ток есть явление электромагнитного характера, протекающее как внутри объема материального проводника, так и вне этого объема, где только наблюдается магнитное поле тока. Таким образом, при рассмотрении вопроса о том, где именно происходит то особое движение, которое и характеризует ток как явление кинетической природы, внимание исследователей естественно обращается также и к пространству вокруг проводника.

Максвелл, особенно обстоятельно анализировавший многие следствия, вытекающие из кинетической природы тока, и опирав­шийся при этом на идеи и опыты Фарадея, между прочим, так выражается по поводу движений электромагнитного характера, кото­рые происходят в системе (двух) токов: „...Эта движущаяся мате­рия, какова бы она ни была, не ограничивается объемом провод­ников, несущих два тока, но, вероятно, простирается по всему пространству, окружающему их". Сам Фарадей, относившийся с большою осторожностью к представлениям об электрическом токе, вытекающим из идеи об электрических жидкостях, склонен был видеть в проводнике, несущем ток, некоторую „ось"—„axis af power",—относительно которой как-то ориентированы электри­ческие и магнитные силы, действующие в цепи. В высокой степени характерно, что Фарадей, открывший законы электролиза и тем самым, казалось бы, давший убедительное доказательство тому, что представление о движении электричества внутри провод­ника, несущего ток, имеет непосредственное отношение к действительности, все же устремляет свой взор в пространство вне про­водника, когда в связи с явлениями электромагнитной индукции ищет ответа на вопрос об основных и характерных свойствах: электрического тока. В какой степени Фарадей склонен был

 

отвлечься от обычных представлений об электрическом токе, сви­детельствуют нижеследующие его слова: „Из двух предположений, весьма обычно принимаемых в настоящее время,—о магнитных жид­костях и об электрических токах—первое необходимо признать ошибочным, а быть может и оба ошибочны".

Все современные движения науки об электромагнитных явлениях в полной мере подтверждают ту основную мысль, что в явлении электрического тока кинетический процесс не ограничен объемом проводника с током, но происходит и в пространстве, его окружаю­щем. Даже более того, можно считать за достоверное, что в про­цессе передачи электрической энергии по проводам первенствую­щую роль играет то движение, которое имеет место в диэлектрике, окружающем проводник. Передаваемая энергия течет вдоль про­водов, но не внутри проводов, а именно через диэлектрик вне проводов. То движение электричества, которое при этом несомненно имеет место внутри проводников и которое имеет самую тесную связь с электромагнитным процессом в целом, в отношении пере­дачи электрической энергии, повндимому, само по себе не играет никакой роли.

В нижеследующих параграфах мы остановимся несколько по­дробнее на тех отчасти достоверных, отчасти предполагаемых дви­жениях, которые имеют место внутри проводника с током, а также вне его, и которые в целом составляют один, по существу недели­мый, электрокинетический процесс.

 

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА III Электрическое смещение

На сайте allrefs.net читайте: "ГЛАВА III Электрическое смещение"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общие соображения о природе тока.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика электромагнитных процессов.
В предыдущих главах мы коснулись одной стороны электромаг­нитных явлений, а именно, рассмотрели некоторые общие свойства магнитного потока и магнитного поля. Теперь сосредоточим наше внимание на др

Электрическое смещение. Основные положения Максвелла.
Известно, что между заряженными телами создается электрическое поле. Это поле деформирует диэлектрик, приводит его в некоторое напряженное состояние, называемое обычно электрической поляризацией

Мера электрического смещения.
Допустим, что мы имеем некоторый диэлектрик, и пусть действующая в нем в точке А электрическая сила Б направлена, как указано стрелкой (рис. 105).

Ток смещения.
Когда мы говорим об электрическом смещении, не следует, во­обще говоря, смешивать этого понятия с электрическим током. Термин „электрическое смещение" мы должны понимать как меру деформации, п

Теорема Максвелла.
Представим себе замкнутую поверхность s, внутри которой как-либо распределены электрические заряды q1,q2, q3 и т. д. Пусть ds представля

Природа электрического смещения.
Максвелл в своих рассуждениях относительно электрического смещения совершенно не касается природы электричества и того, как надо понимать его движение. Все это не имеет значения в фор­мальных постр

Формулировки.
Возвратимся к формулировке теоремы Максвелла: Взяв от обеих частей этого равенства производную по s, получим:

Механическая аналогия.
Остановимся теперь на одной простой механической схеме с целью лучшего уяснения принципа замкнутости тока, а также для того, чтобы наглядно показать значение введенного Максвеллом в науку представл

Непрерывность тока в случае электрической конвекции.
Переход электричества из одного места в другое путем движе­ния заряженных тел вообще и, в частности, заряженных элемен­тарных частиц называется электрической конвекцией и предста­вляет собою

Связь электрического поля с электромагнитными процес­сами. Область электростатики.
В самом начале предыдущей главы (§ 45) мы касались в общих чертах вопроса об электрическом поле и указывали, что его сле­дует рассматривать как одну из сторон того основного электро­магнитного проц

Закон Кулона и вытекающие из него определения и соотношения.
В настоящем параграфе мы даем краткую сводку основных определений и соотношений, относящихся к электрическому полю я вытекающих из закона Кулона. В первую очередь, конечно, напомним формулировку эт

Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
Рассмотрим в некотором электрическом поле две точки, А и В. Линейный интеграл электрической силы вдоль некоторого пути перехода от точки А к точке В, т. е.:

Электрическая деформация среды.
С точки зрения Фарадея и Максвелла, участие промежу­точной среды в передаче электрических действий от одного наэлек­тризованного тела к другому, а также во всех вообще процессах, совершающихся в эл

Линии смещения.
Линиями электрического смещения, или просто линиями сме­щения называются такие линии, построенные в электрическом поле, все элементы которых совпадают по направлению с векторами

Трубка смещения.
Трубкою смещения называется объем диэлектрика имеющий форму трубки, образующими которой служат линии смещения. Рассмотрим некоторую трубку смещения в промежутке между двумя наэлектр

Фарадеевские трубки.
В связи с тем, что было изложено в предыдущем параграфе об особых свойствах трубок смещения, оказывается целесообразным так подбирать размеры этих трубок, чтобы величина полного элек­трического сме

Фарадеевская трубка и количество электричества, с нею связанное.
В дальнейшем мы будем мыслить все электрическое поле за­полненным фарадеевскими трубками. Совершенно подобно тому, как это было в случае магнитного поля в отношении магнитных линий, можно рассматри

Вторая формулировка теоремы Максвелла.
Так как электрическое смещение сквозь поперечное сечение фарадеевской трубки равно единице, то, следовательно, каждая такая трубка, пересекая некоторую поверхность, привносит в вели­чину полного эл

Электризация через влияние. Теорема Фарадея.
Так называемая электризация через влияние, т. е. возникновение электрических зарядов на нейтральном до того проводящем теле в случае поднесения его к какому-либо другому заряженному телу, представл

Энергия электрического поля.
Выше было в достаточной степени выяснено (§§ 1 и 47), что, согласно воззрениям Фарадея и Максвелла, в пространстве, в котором существует электрическое поле, среда находится в особом вынужденном сос

Механические проявления электрического поля.
Механические взаимодействия, наблюдаемые в электрическом поле между наэлектризованными телами и формально описываемые при помощи закона Кулона, могут быть объяснены, с точки зрения &nbs

Преломление фарадеевских трубок.
При переходе фарадеевских трубок (и вообще линий смещения) из одной диэлектрической среды в другую обычно мы имеем дело с изменением направления у са­мой поверхности раздела ди­электриков. Это явле

Электроемкость и диэлектрическая постоянная.
Допустим, что потенциал какого-либо проводящего тела есть U, а потенциалы всех других проводников, находящихся в электриче­ском поле, равны нулю. В этом случае между потенциалом данного тела

Свойства диэлектриков.
В заключение настоящей главы мы дадим краткий обзор неко­торых основных свойств изолирующих материалов (диэлектриков): а) Диэлектрическая постоянная e. Она является главной ха­ракте

Движение электричества внутри проводников.
Шестьдесят лет тому назад, говоря об электрическом токе как о явлении кинетического характера, Максвелл не мог не отме­тить того обстоятельства, что он ничего больше не в состоянии сказать о природ

Участие электрического поля в процессе электрического тока.
Основная мысль Фарадея относительно роли проводника, по которому течет ток, заключается, как было отмечено в предыдущем параграфе, в том, что проводник служит своего рода осью, вокруг которой надле

Участие магнитного поля в процессе электрического тока.
Представление о механизме того процесса, который происходит в пространстве вокруг проводника с током и который органически связан с магнитным полем, можно получить из картины преобразо-

Общие соображения.
В предыдущей главе мыпознакомились с общей характеристи­кой того сложного электромагнитного комплекса, который воспри­нимается нами, как электрический ток. Мы видели, что основной

Ионизирующие агенты.
Ионизирующим агентом называется всякий физический деятель, обусловливающий ионизацию газа, или, в более широком смысле этого термина, всякий деятель, обусловливающий появление в дан­ном объе

Заряд и масса иона.
Из сказанного в предыдущих параграфах следует прежде всего, что заряды, несомые положительными и отрицательными ионами, бу­дучи обратными по знаку, должны быть тождественными по абсо­лютной величин

Влияние давления газа на характер разряда.
Общий характер явлений, наблюдаемых при прохождении элек­трического тока через газ, т. е. при так называемом разряде через газ, зависит от целого ряда обстоятельств, как это уже отчасти должно быть

При атмосферном давлении.
Остановимся теперь на случае прохождения электрического тока через газ при атмосферном давлении. Ради простоты предпо­ложим, что мы имеем дело с воздухом. Представим себе (рис. 134) некоторый генер

Основные соотношения, характеризующие ток через газы.
Обратимся к схеме, изображенной на рис. 134, и допустим, что газ в промежутке между электродами В к С ионизируется не­которым неизменно действующим агентом, интенсивность которого будем хара

Тихий разряд. Корона.
Как уже было разъяснено выше (см. §§ 78, 81 и 82), стадия тихого разряда через газы возникает всякий раз, когда электриче­ская сила достигает такого значения, при котором начинается иони­зация газа

Разрывной разряд.
Интенсивная ионизация газа под влиянием сильного электриче­ского поля, характеризующая стадию тихого разряда, может, как мы знаем, завершаться разрывным разрядом, если только в системе нет ограниче

Вольтова дуга.
Мы уже имелислучай указывать выше (см. § 81), что при достаточной мощности генератора, питающего цепь, и при доста­точно малом общем сопротивлении цепи — разряд через газообраз­ную среду между двум

Дуговые выпрямители.
Дуговые выпрямители основаны на использовании неодинако­вой роли положительного и отрицательного электродов вольтовой дуги. В то время, как положительный электрод играет пассивную роль в осн

Давлениях.
В случаях, когда стадия „тихого разряда" (см. § 81) имеет место в газообразной среде при достаточной степени разряжения (порядка 0,1 мм ртутного столба), с большой отчетливостью вы­явля

Прохождение электрического тока через пустоту.
Если в условиях опыта, о котором мы говорили в конце преды­дущего параграфа, после достижения стадии развития катодных лучей при высоком разрежении газа мы будем продолжать откачи­вать газ, достига

Пустотные электрон­ные приборы.
При практическом исполь­зовании накаленного катода для проведения электриче­ского тока через пустотные приборы в настоящее время применяются самые разно­образные конструкции катода и самые разнообр

Основные положения Максвелла.
Настоящая глава посвящена изучению всякого рода динамиче­ских проявлений того электромагнитного процесса, который про­исходит в системе электрических токов. Мы будем при этом следовать пути, которы

Вторая форма уравнений Лагранжа.
Обоснование положения, что электрический ток есть явление кинетического характера, позволило Максвеллу дать стройное математическое исследование этого явления с помощью второй формы уравнений Лагра

Координатах.
Так как обобщенные координаты, как было выше указано, вполне определяют положение всех частей системы, то они должны быть связаны некоторыми зависимостями с декартовыми координатами всех точек сист

Выбор обобщенных координат для электродинамической системы.
Всякая электродинамическая система, вообще говоря, предста­вляет собою совокупность проводящих цепей, по которым проте­кают электрические токи, т. е. механическую систему, совмещенную с системой эл

Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
По аналитическому строению выражения для кинетической энергии (Т) электродинамической системы можно судить и о фи­зическом характере этой энергии. В самом деле, выражение для кинетической эн

Общее обследование сил, действующих в электродинами­ческой системе.
При наличии в системе процессов механических и электриче­ских мы должны иметь в виду соответственно два рода сил: силы механические и силы электродвижущие. Если известна полная кинетическая энергия

Электрокинетическая энергия.
После общего обследования всех сил, могущих обнаруживаться в системе проводников с токами, сосредоточим наше внимание на электрокинетической энергии Te и рассмотрим более подробно

Электродвижущая сила самоиндукции.
Рассмотрим сначала простейшую систему, состоящую из одного проводящего контура (рис. 153). Если к этому контуру п

Коэффициент самоиндукции.
Для количественного определения коэффициента самоиндукции некоторого контура мыможем воспользоваться любым из соотно­шений, характеризующих в той или иной степени электрокинетическ

Электродвижущая сила взаимной индукции.
Остановимся теперь на рассмотрении системы, состоящей из каких-либо двух проводящих цепей, по которым протекают элек­трические токи i1 и i2 (рис. 158).

Коэффициент взаимной индукции.
Совершенно подобно тому, что мы имели при определении коэффициента самоиндукции (см. соотношения 85 — 89 в § 99), и в случае количественного определения коэффициента взаимной индукции мы, вообще го

Индукции.
Обследуем теперь некоторые количественные соотношения между коэффициентами L1, L2 и М. Будем исходить из основного выраже­ния для электрокинетической энер

Общие выражения для магнитных потоков, сцепляю­щихся с отдельными контурами системы.
Рассмотрим теперь самый общий случай системы из n электри­ческих цепей. В этом случае, т. е. при наличии любого числа отдельных цепей, мы имеем:

Общие выражения для электродвижущих сил, индукти­руемых в отдельных цепях системы.
На основании всего вышеизложенного мы можем, подводя итоги, написать ряд нижеследующих соотношений для электродвижущих сил, индуктируемых в отдельных цепях рассматриваемой системы:

Роль короткозамкнутой вторичной цепи.
При рассмотрении явлений самоиндукции и взаимной индукции мы видели, что величина полной ЭДС, возникающей в некотором проводящем контуре в качестве реакции на производимое изменение общих электрома

Действующие коэффициенты самоиндукции и взаимной индукции.
Выше было в достаточной степени разъяснено, что коэффициент самоиндукции цепи есть функция исключительно геометрических размеров контура данной цепи. Приведенные выше примеры под­тверждают это поло

Электромагнитная сила. Общие соображения.
При анализе связи между кинетической энергией, присущей элек­тродинамической системе, и силами, возникающими в такой системе, было получено (см, § 96) общее выражение для так называемой э

Условия возникновения электромагнитной силы.
Рассмотрим некоторый круговой контур (рис. 164), по которому идет постоянный ток, поддерживаемый с помощью внешнего источ­ника.

Случай сверхпроводящнх контуров.
Для иллюстрации только-что сказанного рассмотрим некоторые случаи, когда токи в системе не сохраняются постоянными. В этом отношении особенный интерес представляют случаи сверхпроводящих цепей, соп

Случай контура с током во внешней магнитном поле.
Рассмотрим еще один пример, именно, движение контура во внешнем постоянном магнитной поле. Допустим, для простоты, что это поле создается постоянным магнитом NS (рисунки 167, 168, 169), а ко

Основная роль бокового распора и продольного тяжения магнитных линий.
Из рассмотренных нами примеров ясно, что все приведенные выше формулировки закона движений в электродинамической системе по существу являются именно лишь различными формулировками одного и того

Случай прямолинейного проводника во внешнем магнит­ном поле.
Однако, иногда применяется и другой подход к анализу и ра­счету сил, действующих в электромагнитных механизмах. Именно, иногда исходят из рассмотрения сил действующих на отдельный участок пр

Электромагнитные взаимодействия в асинхронном двигателе.
При совершенной справедливости формулировки, говорящей о стремлении всякого контура с током охватить наибольший внеш­ний поток, интересно отметить, что в некоторых практических случаях это стремлен

Величина и направление электромагнитной силы в случае одного контура с током.
Рассмотрев физическую природу явления возникновения дви­жений в электродинамической системе, обратимся к определению величины и направления электромагнитной силы в различных ча­стных случаях.

Величина и направление силы электромагнитного взаимо­действия двух контуров с током.
Рассмотрим теперь случай двух контуров, по которым проте­кают токи i1 и i2. Электрокинетическая анергия такой системы определяется выражением:

Контуров с током.
Обратимся к общему случаю системы, состоящей из произволь­ного числа контуров. Электрокинетическая энергия системы равна:

Электромагнитная сила, дей­ствующая на участок проводника с током, расположенный во внешней магнитном поле.
В тех случаях, когда вычисление внешнего потока, связанного с данным контуром, а следовательно, и опреде­ление приращения этого потока, оказывается затруднительным, удобнее пользоваться выражением,

Электромагнитное поле.
В главе III (§ 45) было уже указано, что явления электрического поля и явления магнитного поля ни в коем случае не следует рас­сматривать как совершенно самостоятельные совокупности явлений. Мы име

Основные уравнения электромагнитного поля.
Обратимся к выводу основных соотношений, характеризующих явления электромагнитного поля. Исходным пунктом этого вывода служат два соотношения, уже известные из предыдущих глав, именно? закон магнит

Распространение электромагнитной энергии.
Уравнения (133) и (134) по существу являются общим математическим выражением того факта, что при одновременном существовании взаимно связанных электрического и магнитного полей, т. е. при существов

Опытные данные, подтверждающие теорию Максвелла.
Переходя к вопросу об экспериментальном подтверждении уста­новленных Максвеллом законов распространения электромагнитной энергии, следует отметить, что соответствующий опытный материал настолько ве

Опыты Герца.
Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказыва

Пойнтинга.
Вопрос о механизме распространения электромагнитных воз­мущений и связанного с этим движения электромагнитной энергии представляет глубокий интерес. На этом предмете останавливали свое внимание мно

Распространение тока в металлических массах. Поверхностный аффект.
В предыдущих параграфах настоящей главы были обследованы общие законы распространения электромагнитной энергии. Остано­вимся теперь на более детальном рассмотрении процесса движения энергии в прово

Размерности электрических в магнитных величин.
1. Всякое электрическое и магнитное количество может быть выражено при посредстве основных единиц длины, массы и времени и специальных коэффициентов — диэлектрической постоянной e и магнитной прони

Предметный указатель.
Абсолютная электромагнитная еди­ница: количества электричества 193, коэффициента взаимной индукции 354, коэффициента самоиндукции 342,343, магнитного потока 47,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги