рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Участие электрического поля в процессе электрического тока.

Участие электрического поля в процессе электрического тока. - раздел Право, ГЛАВА III Электрическое смещение Основная Мысль Фарадея Относительно Роли Проводника, По Которому Течет Ток, З...

Основная мысль Фарадея относительно роли проводника, по которому течет ток, заключается, как было отмечено в предыдущем параграфе, в том, что проводник служит своего рода осью, вокруг которой надлежащим образом ориентированы электрические и маг­нитные силы. Развивая эту мысль дальше, Пойнтинг и Дж. Дж. Томсон остановились на предположении, что в процессе электрического тока главное значение имеют силы электрического характера, т. е. электрическое поле. Исходя из этого предположения, они разрабо­тали весьма стройную схему того кинетического процесса, который мы можем мыслить в пространстве, окружающем проводник с током. В тех случаях, когда в данной цепи или вообще в данной системе мы встречаемся с ясно выраженными электрическими зарядами и с электрическим полем, с ними связанным, схема Пойнтинга и Дж. Дж. Томсона весьма удобна и проста.

В виде первого примера рассмотрим случай возникновения электрического тока в проводнике, соединяющем два противо­положно заряженных тела, А и В (рис. 129).

Допустим, что эти тела заряжены одинаковыми количествами электричества обратных зна­ков, так что на теле А находится заряд +q, а на теле В — за­ряд -q. В пространстве, окружающем заряженные тела, мы будем иметь электрическое поле. Все фарадеевские трубки этого поля начинаются на теле А и заканчиваются на теле В. Система обладает определенным запасом энергии в виде энергии электрической де­формации диэлектрика. Этот запас выражается, как известно, ин­тегралом: 1/2EDdv, причем интегрирование распространено по всему пространству, где только существуют фарадеевские трубки рассматриваемой системы. Эта система, очевидно, пребывает в со­стоянии электрического равновесия до тех пор, пока тела А и В в достаточной степени изолированы и пока сила электрической упругости диэлектрика (см. § 47) вполне уравновешивает силу, которая создает в этой среде деформацию. Заметим еще, что но­сителями энергии в рассматриваемом случае, согласно теории Пойнтинга и Дж. Дж. Томсона, будут фарадеевские трубки, и система в целом не изменит своего состояния, пока будет сохраняться устойчивое равновесие всей совокупности фарадеевских трубок в электрическом поле.

Соединим теперь тела А и В металлическим проводником ab, идущим от тела А к телу В вдоль некоторой силовой линии, одно-

 

временно являющейся и осью соответствующей фарадеевской трубки. Пойнтинг доказал математически, что в этом случае геометрические формы поля не нарушаются. Но в системе про­изойдут существенные изменения вследствие нарушения бывшего до того равновесия. Новым фактором в электрическом поле является пространство в объеме проводника ab. Действительно, электрическая упругость металла ничтожно мала, и она не может уравновешивать силу, производящую деформацию, т. е. электрическую силу Е (cм. § 47). Благодаря этому электрическое смещение в объеме провод­ника исчезнет. Другими словами, должны будут исчезнуть фарадеевские трубки, оказавшиеся внутри объема, занимаемого провод­ником. Энергия электрической деформации, однако, исчезнуть не может, хотя бы носители ее — фарадеевские трубки — и исчезли. Эта энергия перейдет только в другую форму. Она превращается в тепло путем некоторого процесса, сопровождающегося приращением кинетической энергии мо­лекул вещества проводника ab. Описываемый процесс исчезно­вения деформации называют „расслаблением деформации", или „реляксацией". В материаль­ных системах мы часто встре­чаемся с подобным же явлением реляксации. Всем, например, из­вестна в этом отношении смола, называемая сапожным варом. Это — твердое тело, в котором, несомненно, можно вызвать уп­ругую деформацию, но только на очень короткий промежуток времени. Подобная деформация, как таковая, скоро исчезает вслед­ствие малой способности вара упруго сопротивляться внешней де­формирующей силе. Он уступает ей, течет.

После исчезновения фарадеевских трубок в объеме проводника ab процесс, однако, не закончится. Фарадеевские трубки, как известно (см. § 68), производят друг на друга боковое давление, или, дру­гими словами, между ними существует боковой распор. Если в од­ной части электрического поля исчезнут фарадеевские трубки, то вследствие того, что боковой распор трубок, извне приле­гающих к этой части пространства, не будет ничем уравно­вешиваться, в рассматриваемой системе равновесное состояние окажется нарушенным. Неуравновешенный распор фарадеевских трубок заставит их двигаться поперек их длины по направлению к части пространства, свободной от трубок. Поэтому фарадеевские трубки, находящиеся вне проводника ab, войдут в него извне и вновь заполнят его объем. За этим последует повторение только-что рассмотренного процесса реляксации электрической деформации в объеме проводника ab и т. д. и т. д. Таким образом, в простран­стве вокруг проводника ab возникает движение фарадеевских трубок

 

по направлению к проводнику, как показано стрелками на рис. 129, и одновременно с этим будет происходить поглощение трубок проводником, сопровождающееся их реляксацией, т. е. исчезновением. Появление новых трубок в проводнике будет иметь следствием не­прерывное возобновление деформация электрического смещения через любое поперечное сечение проводника, что эквивалентно не­прерывному течению электричества по проводнику. И если в одну секунду внутрь проводника войдет N фарадеевских трубок, то в то же время через поперечное сечение его протечет N единиц электри­чества, ибо электрическое смещение сквозь поперечное сечение каждой фарадеевской трубки равно единице.

Процесс перемещения фарадеевских трубок и непрерывного по­глощения их проводником ab будет продолжаться до тех пор, пока не иссякнет запас трубок в данной системе, т. е. пока вся энергия электрического поля не превратится в тепло, нагревающее про­водник. Результатом исчезания фарадеевских трубок является то, что потенциалы тел А и В между собою уравниваются, в конце концов делаются совершенно тождественными, и мы имеем:

UA-UB=0.

Опыт показывает, что рассматриваемый процесс исчезновения электрического поля, помимо выделения теплоты в веществе про­водника ab, сопровождается еще весьма характерным явлением: вокруг проводника наблюдается магнитное поле. Согласно воз­зрениям Дж. Дж. Томсона и Пойнтинга, представление о маг­нитном поле необходимо рассматривать как наш способ восприятия движения фарадеевских трубок. Согласно этой теории, фарадеевские трубки, перемещающиеся перпендикулярно своей длине, производят действия, обычно нами приписываемые особому состоянию среды, так называемому магнитному состоянию. При этом направление возникающего „магнитного поля", т. е. направление, характеризую­щее добавочное свойство среды, составляет прямой угол с напра­влением самих фарадеевских трубок и направлением их перемещения.

Представим себе теперь, что общая обстановка схемы, только-что нами рассмотренной и изображенной на рис. 129, будет до­полнена в том отношении, что к телам А и В извне будут непре­рывно подводиться новые электрические заряды и связанные с ними новые фарадеевские трубки, по мере того, как проводник ab будет поглощать запас энергии электрического поля системы, превращая его в тепло. В таком случае течение электричества в проводнике ab, сопровождаемое описанным выше движением фарадеевских тру­бок в пространстве вокруг проводника, может продолжаться не­определенно долго.

По Пойнтингу и Дж. Дж. Томсону, во всех генераторах или источниках электрической энергии происходит какой-то внутренний процесс, в результате которого возникают фарадеевские трубки, идущие изнутри источника и обусловливающие между зажимами генератора некоторую определенную разность потенциалов. Иными

 

словами, зажимы генератора играют для внешней цепи ту же роль, что и заряженные тела А и В в только-что разобранном случае (рис. 129).

В качестве более сложного примера того, как с точки зрения Пойнтинга и Дж. Дж. Томсона можно понимать механизм электри­ческого тока, остановимся на схеме передачи электрической энергии от некоторого генератора, скажем, от батареи аккумуляторов, по проводникам АА' и ВВ' к приемнику электрической энергии А'В', который можем в простейшем случае представить себе в виде ка­кого-либо полезного сопротивления R (рис. 130). Образующиеся в генераторе фарадеевские трубки, изображенные на рисунке тонкими сплошными линиями, под влиянием бокового распора рас­пространяются по окружающему пространству, опираясь своими концами на проводники (+ и -), которые идут от зажимов А и В.. Направление движения фарадеевских трубок показано большой стрелкой (от генератора к приемнику). Провода АА' и ВВ' являются при этом как бы направляющими для движущихся трубок. При движении трубки отдают часть своей энергии этим направляющим,, что осуществляется поглощением конечных участков трубок веще­ством проводника. В связи с этим разность потенциалов между концами каждой фарадеевской трубки уменьшается по мере удаления от генератора. И, наконец, дошедшие до приемника R участки фарадеевских трубок поглощаются им и обусловливают выделение в нем эквивалентного количества энергии в какой-либо иной форме (не электрической). Сказанное очень хорошо иллюстрируется, по Пойнтингу, путем построения системы равнопотенциальных поверхно­стей, которые на рис. 130 показаны пунктирными линиями (в се­чении плоскости рисунка).

Если при этом построение данных по­верхностей произвести с таким расчетом, чтобы разность потенциалов между двумя соседними равнопотенциальными поверхностями была некоторой постоянной для данного случая величиной, то из рас­сматриваемого схематического рисунка можно вывести некоторые количественные заключения. Действительно, количество электри­ческой энергии, которою обладает данный участок фарадеевской трубки, численно равно (см. § 67) половине разности потенциалов

 

между концами этого участка, т. е.1/2(U1-U2). Следовательно, по­строенная указанным выше способом система равнопотенциальных поверхностей разбивает все фарадеевские трубки на ячейки, каждая из которых является носительницей одного и того же количества электрической энергии. Условия экономичности передачи энергии вдоль проводов АА' и ВВ' требуют, чтобы между генератором* и приемником расходовалось возможно меньше энергии. С рассматривае­мой точки зрения это означает, что провода АА' и ВВ' должны по­глощать возможно меньшее количество вышеупомянутых ячеек равной анергии, и возможно большее количество этих ячеек должно до­ходить до приемника R. Отсюда вытекает требование, чтобы равно-потенциальные поверхности в возможно большем количестве пере­секали полезное сопротивление и чтобы таких пересечений при­ходилось как можно меньше на долю проводов, передающих энергию, т. е. чтобы падение напряжения в этих проводах было возможно меньше. На рис. 130 это иллюстрируется соответствующим рас­положением поверхностей уровня: главная часть их приходится на долю полезного сопротивления R. В отличие от того, что изображено на рис. 129, где предполагается, что фарадеевские трубки входят в проводник их поглощающий, оставаясь ему параллельными, в схеме передачи энергии, представленной на рис. 130, процесс поглощения фарадеевских трубок проводами АА' и ВВ' необходимо, по Пойнтингу, представлять в виде последовательного, так сказать, втягивания концов каждой трубки, опирающейся на проводник. При этом угол, образуемый направлением фарадеевской трубки и направлением оси проводника, зависит от сопротивления последнего, доходя в пределе до 90° в случае сверхпроводников, потенциал которых будет один и тот же по всей длине.

Интересно обратить внимание на некоторые количественные соотношения, характеризующие рассматриваемую электрическую цепь с точки зрения энергетической. Допустим, что режим электрического тока в цепи вполне установился, т. е. что по ней протекает строго постоянный ток. Этот режим можно понимать, как состояние установившегося равновесия в системе: ежесекундно вся внешняя цепь в целом поглощает ровно столько фарадеевских трубок, сколько их вырабатывает генератор, в данном случае аккумуляторная ба­тарея АВ, Положим, что цепь поглощает N фарадеевских трубок в секунду. Как это явствует из предыдущего, число N определяет собою количество электричества, протекающего в одну секунду через поперечное сечение цепи, т. е. это именно и есть мера силы тока. Поэтому в данном случае можем написать:

i=dq/dt=N.

Обозначая через UA-UB разность потенциалов между зажимами А и В, получаем для мощности, расходуемой во внешней цепи, следующее выражение:

P=(UA-UB)i=(UA-UB)N.

Следовательно, каждая фарадеевская трубка, поглощаемая внешнею цепью, отдает ей количество энергии, равное (UA-UB) эргов, если мы все величины выражаем в абсолютной системе. В то же время мы знаем, что каждая фарадеевская трубка, в силу связанной с ней электрической деформации, является носительницей энергии, и это количество энергии есть 1/2 (UA -UB) эргов. Таким образом, из всей энергии, вносимой фарадеевской трубкой в объем поглощающего её проводника, только половина может быть объяснена тем запасом энергии, который присущ каждой трубке в силу электрической деформации среды. Согласно теории Пойнтинга, другая половина этой энергии есть энергия движения фарадеевских трубок, обычно нами воспринимаемая как энергия магнитного поля. Это находится в полном соответствии с упомянутой уже выше идеей Пойнтинга и Дж. Дж. Томсона, что представление о магнитном поле и есть лишь форма восприятия нами движения фарадеевских трубок. Подробнее об этом существовании электрического и маг­нитного поля в электромагнитных процессах мы будем говорить в главе VIII— „Движение электромагнитной энергии". Здесь ограни­чимся лишь констатированием того факта, что во всяком простран­стве, через которое распространяется электромагнитная энергия, всегда обнаруживаются как электрическое, так и магнитное поле.

Итак, мы познакомились с точкой зрения Пойнтинга и Дж„ Дж. Томсона на механизм того процесса, который происхо­дит в пространстве, окружающем проводник с током. Однако, как ни изящна сама по себе основная картина движения фарадеевских трубок, предположенная и развитая ими, есть целый ряд случаев, когда этой картиной никак удовлетвориться нельзя. Так, например, электромагнитную индукцию тока чрезвычайно трудно представить себе с точки зрения движения фарадеевских трубок, в особенности в простейшем случае движения проводника поперек магнитного поля, скажем, постоянного магнита. Не менее трудно постигнуть о этой точки зрения и само постоянное магнитное поле в случае, когда в нем не наблюдается никаких электрических сил, как это и будет в поле постоянного магнита. Попытки Дж. Дж. Томсона нарисовать схему механизма явления во всех этих случаях приводят к слишком сложным и маловероятным построениям, основанным на допущении, что мы можем одновременно иметь в пространстве две системы фарадеевских трубок, противоположно направленных, на­лагающихся одна на другую и двигающихся по противоположным направлениям.

Обратимся еще к случаю постоянного тока в цепи, изображен­ной на рис. 130. Представим себе, что где-либо вблизи проводника расположено некоторое проводящее тело, например, металлический шар. Ради простоты допустим, что магнитная проницаемость вещества шара равна единице. Внесение этого проводящего шара в электро­магнитное поле тока ни в малейшей степени не изменит характера магнитного поля в пространстве вокруг проводника с током. И в то же время совершенно несомненно, что в случае постоянного тока, протекающего по рассматриваемой цепи, внутри металлического

 

шара исчезнет электрическое поле. В объеме проводящего шара не будет ни электрического поля, ни фарадеевских трубок. Если продолжать стоять на точке зрения Пойнтинга и Дж. Дж. Томсона, то надо допустить, что вне шара продолжается прежнее движение фарадеевских трубок. Совершенно невозможно допустить, чтобы в объеме шара появились добавочные трубки, противоположно на­правленные и двигающиеся в противоположную сторону. Вообще, отсутствие электрического поля вокруг проводника с током может быть констатировано в целом ряде случаев, и все происходит так, как будто бы наличие этого поля не является характерным при­знаком процесса, происходящего вокруг проводника с током.

Полное отсутствие электрического поля во всех точках про­странства, окружающего проводник с током, может быть конста­тировано в случае тока, индуктированного в некоторой сверхпроводящей цепи, не заключающей в себе никаких частей, поглощающих электромагнитную энергию. По этой цепи будет протекать постоян­ный ток. Магнитное поле его будет неизменно. Потенциал всех точек сверхпроводящего контура будет один и тот же. В поле тока в этом случае не может быть никаких электрических сил. В связи с этим отметим, что в рассматриваемом случае в цепи тока нет никакого поглощения электромагнитной энергии. Запас этой энергии,

равный 1/2Li2 и представляющий собою энергию магнитного поля

тока (см. § 21), остается неизменным и недвижимым. Повидимому, электрическое поле вокруг проводника с током сопутствует магнитному полю только в тех случаях, когда в цепи вдоль про­водника движется электромагнитная энергия. В то же время магнитное поле есть совершенно неотъемлемый и безусловно всегда наблюдаемый признак того кинетического процесса, который мы называем электрическим током. На основании всего изложенного представляется более соответствующим основным , свойствам тока, строить вероятную схему механизма электрического тока, исходя из магнитного поля как первичного явления. Рассмотрению этого вопроса посвящен следующий параграф. В заключение же настоя­щего параграфа мы, однако, считаем долгом отметить несомненную простоту схем Пойнтинга и Дж. Дж. Томсона в тех случаях, когда мы встречаемся в процессе электрического тока с ясно выраженными зарядами как, например, в случае прохождения тока через газы и электролиты. Оставляя поэтому открытым вопрос о степени отношения этих схем к действительности, мы считаем все же весьма полезным применение их в указанных случаях, тем более, что получаемые таким путем количественные результаты, насколько об этом можно судить, вполне справедливы.

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА III Электрическое смещение

На сайте allrefs.net читайте: "ГЛАВА III Электрическое смещение"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Участие электрического поля в процессе электрического тока.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика электромагнитных процессов.
В предыдущих главах мы коснулись одной стороны электромаг­нитных явлений, а именно, рассмотрели некоторые общие свойства магнитного потока и магнитного поля. Теперь сосредоточим наше внимание на др

Электрическое смещение. Основные положения Максвелла.
Известно, что между заряженными телами создается электрическое поле. Это поле деформирует диэлектрик, приводит его в некоторое напряженное состояние, называемое обычно электрической поляризацией

Мера электрического смещения.
Допустим, что мы имеем некоторый диэлектрик, и пусть действующая в нем в точке А электрическая сила Б направлена, как указано стрелкой (рис. 105).

Ток смещения.
Когда мы говорим об электрическом смещении, не следует, во­обще говоря, смешивать этого понятия с электрическим током. Термин „электрическое смещение" мы должны понимать как меру деформации, п

Теорема Максвелла.
Представим себе замкнутую поверхность s, внутри которой как-либо распределены электрические заряды q1,q2, q3 и т. д. Пусть ds представля

Природа электрического смещения.
Максвелл в своих рассуждениях относительно электрического смещения совершенно не касается природы электричества и того, как надо понимать его движение. Все это не имеет значения в фор­мальных постр

Формулировки.
Возвратимся к формулировке теоремы Максвелла: Взяв от обеих частей этого равенства производную по s, получим:

Механическая аналогия.
Остановимся теперь на одной простой механической схеме с целью лучшего уяснения принципа замкнутости тока, а также для того, чтобы наглядно показать значение введенного Максвеллом в науку представл

Непрерывность тока в случае электрической конвекции.
Переход электричества из одного места в другое путем движе­ния заряженных тел вообще и, в частности, заряженных элемен­тарных частиц называется электрической конвекцией и предста­вляет собою

Связь электрического поля с электромагнитными процес­сами. Область электростатики.
В самом начале предыдущей главы (§ 45) мы касались в общих чертах вопроса об электрическом поле и указывали, что его сле­дует рассматривать как одну из сторон того основного электро­магнитного проц

Закон Кулона и вытекающие из него определения и соотношения.
В настоящем параграфе мы даем краткую сводку основных определений и соотношений, относящихся к электрическому полю я вытекающих из закона Кулона. В первую очередь, конечно, напомним формулировку эт

Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
Рассмотрим в некотором электрическом поле две точки, А и В. Линейный интеграл электрической силы вдоль некоторого пути перехода от точки А к точке В, т. е.:

Электрическая деформация среды.
С точки зрения Фарадея и Максвелла, участие промежу­точной среды в передаче электрических действий от одного наэлек­тризованного тела к другому, а также во всех вообще процессах, совершающихся в эл

Линии смещения.
Линиями электрического смещения, или просто линиями сме­щения называются такие линии, построенные в электрическом поле, все элементы которых совпадают по направлению с векторами

Трубка смещения.
Трубкою смещения называется объем диэлектрика имеющий форму трубки, образующими которой служат линии смещения. Рассмотрим некоторую трубку смещения в промежутке между двумя наэлектр

Фарадеевские трубки.
В связи с тем, что было изложено в предыдущем параграфе об особых свойствах трубок смещения, оказывается целесообразным так подбирать размеры этих трубок, чтобы величина полного элек­трического сме

Фарадеевская трубка и количество электричества, с нею связанное.
В дальнейшем мы будем мыслить все электрическое поле за­полненным фарадеевскими трубками. Совершенно подобно тому, как это было в случае магнитного поля в отношении магнитных линий, можно рассматри

Вторая формулировка теоремы Максвелла.
Так как электрическое смещение сквозь поперечное сечение фарадеевской трубки равно единице, то, следовательно, каждая такая трубка, пересекая некоторую поверхность, привносит в вели­чину полного эл

Электризация через влияние. Теорема Фарадея.
Так называемая электризация через влияние, т. е. возникновение электрических зарядов на нейтральном до того проводящем теле в случае поднесения его к какому-либо другому заряженному телу, представл

Энергия электрического поля.
Выше было в достаточной степени выяснено (§§ 1 и 47), что, согласно воззрениям Фарадея и Максвелла, в пространстве, в котором существует электрическое поле, среда находится в особом вынужденном сос

Механические проявления электрического поля.
Механические взаимодействия, наблюдаемые в электрическом поле между наэлектризованными телами и формально описываемые при помощи закона Кулона, могут быть объяснены, с точки зрения &nbs

Преломление фарадеевских трубок.
При переходе фарадеевских трубок (и вообще линий смещения) из одной диэлектрической среды в другую обычно мы имеем дело с изменением направления у са­мой поверхности раздела ди­электриков. Это явле

Электроемкость и диэлектрическая постоянная.
Допустим, что потенциал какого-либо проводящего тела есть U, а потенциалы всех других проводников, находящихся в электриче­ском поле, равны нулю. В этом случае между потенциалом данного тела

Свойства диэлектриков.
В заключение настоящей главы мы дадим краткий обзор неко­торых основных свойств изолирующих материалов (диэлектриков): а) Диэлектрическая постоянная e. Она является главной ха­ракте

Общие соображения о природе тока.
В настоящей главе мы в самых общих чертах ознакомимся с современным состоянием вопроса о природе электрического тока. Хотя вопрос этот по существу относится к области чистой физики, однако,

Движение электричества внутри проводников.
Шестьдесят лет тому назад, говоря об электрическом токе как о явлении кинетического характера, Максвелл не мог не отме­тить того обстоятельства, что он ничего больше не в состоянии сказать о природ

Участие магнитного поля в процессе электрического тока.
Представление о механизме того процесса, который происходит в пространстве вокруг проводника с током и который органически связан с магнитным полем, можно получить из картины преобразо-

Общие соображения.
В предыдущей главе мыпознакомились с общей характеристи­кой того сложного электромагнитного комплекса, который воспри­нимается нами, как электрический ток. Мы видели, что основной

Ионизирующие агенты.
Ионизирующим агентом называется всякий физический деятель, обусловливающий ионизацию газа, или, в более широком смысле этого термина, всякий деятель, обусловливающий появление в дан­ном объе

Заряд и масса иона.
Из сказанного в предыдущих параграфах следует прежде всего, что заряды, несомые положительными и отрицательными ионами, бу­дучи обратными по знаку, должны быть тождественными по абсо­лютной величин

Влияние давления газа на характер разряда.
Общий характер явлений, наблюдаемых при прохождении элек­трического тока через газ, т. е. при так называемом разряде через газ, зависит от целого ряда обстоятельств, как это уже отчасти должно быть

При атмосферном давлении.
Остановимся теперь на случае прохождения электрического тока через газ при атмосферном давлении. Ради простоты предпо­ложим, что мы имеем дело с воздухом. Представим себе (рис. 134) некоторый генер

Основные соотношения, характеризующие ток через газы.
Обратимся к схеме, изображенной на рис. 134, и допустим, что газ в промежутке между электродами В к С ионизируется не­которым неизменно действующим агентом, интенсивность которого будем хара

Тихий разряд. Корона.
Как уже было разъяснено выше (см. §§ 78, 81 и 82), стадия тихого разряда через газы возникает всякий раз, когда электриче­ская сила достигает такого значения, при котором начинается иони­зация газа

Разрывной разряд.
Интенсивная ионизация газа под влиянием сильного электриче­ского поля, характеризующая стадию тихого разряда, может, как мы знаем, завершаться разрывным разрядом, если только в системе нет ограниче

Вольтова дуга.
Мы уже имелислучай указывать выше (см. § 81), что при достаточной мощности генератора, питающего цепь, и при доста­точно малом общем сопротивлении цепи — разряд через газообраз­ную среду между двум

Дуговые выпрямители.
Дуговые выпрямители основаны на использовании неодинако­вой роли положительного и отрицательного электродов вольтовой дуги. В то время, как положительный электрод играет пассивную роль в осн

Давлениях.
В случаях, когда стадия „тихого разряда" (см. § 81) имеет место в газообразной среде при достаточной степени разряжения (порядка 0,1 мм ртутного столба), с большой отчетливостью вы­явля

Прохождение электрического тока через пустоту.
Если в условиях опыта, о котором мы говорили в конце преды­дущего параграфа, после достижения стадии развития катодных лучей при высоком разрежении газа мы будем продолжать откачи­вать газ, достига

Пустотные электрон­ные приборы.
При практическом исполь­зовании накаленного катода для проведения электриче­ского тока через пустотные приборы в настоящее время применяются самые разно­образные конструкции катода и самые разнообр

Основные положения Максвелла.
Настоящая глава посвящена изучению всякого рода динамиче­ских проявлений того электромагнитного процесса, который про­исходит в системе электрических токов. Мы будем при этом следовать пути, которы

Вторая форма уравнений Лагранжа.
Обоснование положения, что электрический ток есть явление кинетического характера, позволило Максвеллу дать стройное математическое исследование этого явления с помощью второй формы уравнений Лагра

Координатах.
Так как обобщенные координаты, как было выше указано, вполне определяют положение всех частей системы, то они должны быть связаны некоторыми зависимостями с декартовыми координатами всех точек сист

Выбор обобщенных координат для электродинамической системы.
Всякая электродинамическая система, вообще говоря, предста­вляет собою совокупность проводящих цепей, по которым проте­кают электрические токи, т. е. механическую систему, совмещенную с системой эл

Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
По аналитическому строению выражения для кинетической энергии (Т) электродинамической системы можно судить и о фи­зическом характере этой энергии. В самом деле, выражение для кинетической эн

Общее обследование сил, действующих в электродинами­ческой системе.
При наличии в системе процессов механических и электриче­ских мы должны иметь в виду соответственно два рода сил: силы механические и силы электродвижущие. Если известна полная кинетическая энергия

Электрокинетическая энергия.
После общего обследования всех сил, могущих обнаруживаться в системе проводников с токами, сосредоточим наше внимание на электрокинетической энергии Te и рассмотрим более подробно

Электродвижущая сила самоиндукции.
Рассмотрим сначала простейшую систему, состоящую из одного проводящего контура (рис. 153). Если к этому контуру п

Коэффициент самоиндукции.
Для количественного определения коэффициента самоиндукции некоторого контура мыможем воспользоваться любым из соотно­шений, характеризующих в той или иной степени электрокинетическ

Электродвижущая сила взаимной индукции.
Остановимся теперь на рассмотрении системы, состоящей из каких-либо двух проводящих цепей, по которым протекают элек­трические токи i1 и i2 (рис. 158).

Коэффициент взаимной индукции.
Совершенно подобно тому, что мы имели при определении коэффициента самоиндукции (см. соотношения 85 — 89 в § 99), и в случае количественного определения коэффициента взаимной индукции мы, вообще го

Индукции.
Обследуем теперь некоторые количественные соотношения между коэффициентами L1, L2 и М. Будем исходить из основного выраже­ния для электрокинетической энер

Общие выражения для магнитных потоков, сцепляю­щихся с отдельными контурами системы.
Рассмотрим теперь самый общий случай системы из n электри­ческих цепей. В этом случае, т. е. при наличии любого числа отдельных цепей, мы имеем:

Общие выражения для электродвижущих сил, индукти­руемых в отдельных цепях системы.
На основании всего вышеизложенного мы можем, подводя итоги, написать ряд нижеследующих соотношений для электродвижущих сил, индуктируемых в отдельных цепях рассматриваемой системы:

Роль короткозамкнутой вторичной цепи.
При рассмотрении явлений самоиндукции и взаимной индукции мы видели, что величина полной ЭДС, возникающей в некотором проводящем контуре в качестве реакции на производимое изменение общих электрома

Действующие коэффициенты самоиндукции и взаимной индукции.
Выше было в достаточной степени разъяснено, что коэффициент самоиндукции цепи есть функция исключительно геометрических размеров контура данной цепи. Приведенные выше примеры под­тверждают это поло

Электромагнитная сила. Общие соображения.
При анализе связи между кинетической энергией, присущей элек­тродинамической системе, и силами, возникающими в такой системе, было получено (см, § 96) общее выражение для так называемой э

Условия возникновения электромагнитной силы.
Рассмотрим некоторый круговой контур (рис. 164), по которому идет постоянный ток, поддерживаемый с помощью внешнего источ­ника.

Случай сверхпроводящнх контуров.
Для иллюстрации только-что сказанного рассмотрим некоторые случаи, когда токи в системе не сохраняются постоянными. В этом отношении особенный интерес представляют случаи сверхпроводящих цепей, соп

Случай контура с током во внешней магнитном поле.
Рассмотрим еще один пример, именно, движение контура во внешнем постоянном магнитной поле. Допустим, для простоты, что это поле создается постоянным магнитом NS (рисунки 167, 168, 169), а ко

Основная роль бокового распора и продольного тяжения магнитных линий.
Из рассмотренных нами примеров ясно, что все приведенные выше формулировки закона движений в электродинамической системе по существу являются именно лишь различными формулировками одного и того

Случай прямолинейного проводника во внешнем магнит­ном поле.
Однако, иногда применяется и другой подход к анализу и ра­счету сил, действующих в электромагнитных механизмах. Именно, иногда исходят из рассмотрения сил действующих на отдельный участок пр

Электромагнитные взаимодействия в асинхронном двигателе.
При совершенной справедливости формулировки, говорящей о стремлении всякого контура с током охватить наибольший внеш­ний поток, интересно отметить, что в некоторых практических случаях это стремлен

Величина и направление электромагнитной силы в случае одного контура с током.
Рассмотрев физическую природу явления возникновения дви­жений в электродинамической системе, обратимся к определению величины и направления электромагнитной силы в различных ча­стных случаях.

Величина и направление силы электромагнитного взаимо­действия двух контуров с током.
Рассмотрим теперь случай двух контуров, по которым проте­кают токи i1 и i2. Электрокинетическая анергия такой системы определяется выражением:

Контуров с током.
Обратимся к общему случаю системы, состоящей из произволь­ного числа контуров. Электрокинетическая энергия системы равна:

Электромагнитная сила, дей­ствующая на участок проводника с током, расположенный во внешней магнитном поле.
В тех случаях, когда вычисление внешнего потока, связанного с данным контуром, а следовательно, и опреде­ление приращения этого потока, оказывается затруднительным, удобнее пользоваться выражением,

Электромагнитное поле.
В главе III (§ 45) было уже указано, что явления электрического поля и явления магнитного поля ни в коем случае не следует рас­сматривать как совершенно самостоятельные совокупности явлений. Мы име

Основные уравнения электромагнитного поля.
Обратимся к выводу основных соотношений, характеризующих явления электромагнитного поля. Исходным пунктом этого вывода служат два соотношения, уже известные из предыдущих глав, именно? закон магнит

Распространение электромагнитной энергии.
Уравнения (133) и (134) по существу являются общим математическим выражением того факта, что при одновременном существовании взаимно связанных электрического и магнитного полей, т. е. при существов

Опытные данные, подтверждающие теорию Максвелла.
Переходя к вопросу об экспериментальном подтверждении уста­новленных Максвеллом законов распространения электромагнитной энергии, следует отметить, что соответствующий опытный материал настолько ве

Опыты Герца.
Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказыва

Пойнтинга.
Вопрос о механизме распространения электромагнитных воз­мущений и связанного с этим движения электромагнитной энергии представляет глубокий интерес. На этом предмете останавливали свое внимание мно

Распространение тока в металлических массах. Поверхностный аффект.
В предыдущих параграфах настоящей главы были обследованы общие законы распространения электромагнитной энергии. Остано­вимся теперь на более детальном рассмотрении процесса движения энергии в прово

Размерности электрических в магнитных величин.
1. Всякое электрическое и магнитное количество может быть выражено при посредстве основных единиц длины, массы и времени и специальных коэффициентов — диэлектрической постоянной e и магнитной прони

Предметный указатель.
Абсолютная электромагнитная еди­ница: количества электричества 193, коэффициента взаимной индукции 354, коэффициента самоиндукции 342,343, магнитного потока 47,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги