рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Ионизирующие агенты.

Ионизирующие агенты. - раздел Право, ГЛАВА III Электрическое смещение Ионизирующим Агентом Называется Всякий Физический Деятель, Обусловлива...

Ионизирующим агентом называется всякий физический деятель, обусловливающий ионизацию газа, или, в более широком смысле этого термина, всякий деятель, обусловливающий появление в дан­ном объеме ионов различных категорий.

При этом необходимо иметь в виду, что действие ионизирующего агента на газ обычно не сопровождается непрерывным воз­растанием числа ионов в единице объема газа, так как наряду с образованием ионов действуют и факторы, уменьшающие их число, например, так называемая рекомбинация ионов, т. е. воссоединение двух ионов разных знаков, имеющие своим результатом обратное образование нейтральной частицы. Обычно, в случае непрерывно действующего ионизирующего агента скоро наступает подвижное равновесие, при котором в единицу времени в каждом элементе объема газа столько ионов образуется вновь, сколько выбывает в силу рекомбинации, В особых случаях, однако, может иметь место столь быстрое нарастание числа ионов, что стационарное состоя­ние не достигается (см. § 81).

 

 

Не претендуя на исчерпывающую полноту, ниже мы приводим перечень ионизирующих агентов, известных в настоящее время. Прежде всего мы перечислим ионизирующие агенты, могущие воз­действовать непосредственно на газы, в объеме, ими занимаемом:

1. Рентгеновы лучи.

2. Ультрафиолетовые лучи.

3. Излучения радиоактивных веществ, т. е. так называемые a, b и g-лучи.

4. Космические лучи.

5. Электрическое поле, сила которого превышает некоторое зна­чение, определяемое в каждом частном случае целым рядом обстоя­тельств: температурой, давлением, природой газа и т. д.

6. Высокая температура газа.

7. Коллизии, т. е. соударений частиц, газа. Известно, что в среде газа мы имеем дело с непрерывным движением частиц вещества (молекул газа). По теории вероятностей в данном объеме газа имеется некоторое, вообще говоря, очень незначительное, количество таких частиц, которые движутся с весьма большими скоростями, т. е. обладают сравнительно большим запасом кинетической энер­гии. Эти соударения особо быстро движущихся частиц газа с дру­гими частицами могут, повидимому, в случае достаточной величины кинетической энергии сопровождаться, выбиванием электрона из нейтральной молекулы газа в связи с переходом известной границы в относительном расположении отдельных элементов, входящих в состав той сложной структуры, которую представляет собою атом вещества и его молекула. Таким образом, благодаря коллизии, из нейтральной молекулы газа может образоваться два иона: элек­трон и положительно заряженный остаток молекулы. Чем выше температура газа, тем больше скорости теплового движения моле­кул газа и тем становится больше вероятность расщепления ней­тральной молекулы газа на два иона благодаря коллизии. Есть основание предполагать, что и при обычной комнатной температуре это явление, хотя и в сравнительно очень слабой степени, все же имеет место. Этим обстоятельством, помимо ионизирующего дей­ствия космических лучей и возможных следов радиоактивных ве­ществ, вообще говоря, тоже весьма слабого, видимо, и объясняется всегда присущая газу в нормальных условиях чрезвычайно ничтож­ная проводимость (см. первые строки § 77). При высоких же тем­пературах газовой среды роль коллизий, т. е. соударений молекул, выступает на первый план в качестве причины ионизации (п. 6 этого параграфа). В настоящее время не подлежит никакому сомне­нию, что и механизм ионизации сильным электрическим полем (п. 5 этого параграфа) по существу состоит в быстром нарастании числа коллизий, расщепляющих нейтральные молекулы на пары ионов. Дело в том, что ионы, всегда, как было только-что указано, имеющиеся в газе даже при нормальных условиях, под действием электрического поля, получают добавочные ускорения, и если длина свободного пути пробега ионов достаточно велика, что определяется давлением газа, эти начальные ионы могут приобрести столь

 

значительные приращения скорости движения и определяемой этим кинетической энергии, что становятся способными при соударении с встречающимися на пути нейтральными молекулами расщеплять их на пары ионов. Эти последние ионы в свою очередь под действием электрического поля приобретают большие ско­рости и расщепляют другие нейтральные молекулы и т. д. Та раз­ность потенциалов, под влиянием которой ион приобретает прира­щение кинетической энергии, достаточное для расщепления встреч­ной нейтральной молекулы, называется ионизирующим потенциалом и обозначается обычно через Ui. К расщеплению нейтральной мо­лекулы газа на пары ионов под действием какого-либо „удара" сводится, вообще говоря, и воздействие на газ со стороны всех других ионизирующих агентов (пп. 1, 2, 3 и 4 настоящего пара­графа). Во всех этих случаях мы имеем дело либо с каким-то им­пульсом, который получает нейтральная молекула при падении на нее достаточно мощного кванта лучистой энергии, либо с соударе­ниями этой молекулы с очень быстро несущимися частицами неко­торой физической материи (случай a и b лучей, испускаемых радио­активными веществами).

После всего сказанного выше о ионизирующих агентах, про­являющих свое действие в объеме газа, мы продолжим перечень, распространительно понимая под термином „ионизирующий агент" всякий вообще фактор, обусловливающий появление ионов в газе. Это именно имеет отношение к целому ряду случаев, со стороны внешней обстановки характеризуемых соприкосновением газообраз­ной среды с твердыми или жидкими телами.

8. Высокая температура твердых и жидких тел. Как показы­вает исчерпывающее обследование этого случая, из накаленных твердых и жидких тел выделяются в окружающее пространство так называемые термионы, прдставляющие собою не что иное, как, электроны. При очень высокой температуре электрода эти элек­троны выделяются из него весьма мощным потоком, играющим в ряде случаев большую роль при прохождении тока через газы и пустоту. Техническое значение этого источника ионов чрезвычайно велико (см. §§ 85, 86, 88 и 89). В естественных условиях сверх­мощные потоки таких электронов излучаются находящимися при высокой температуре небесными светилами, например, солнцем. Попадая в верхние слои земной атмосферы, потоки излучаемых солнцем электронов вызывают разного рода свечения разреженных газов (северные сияния) и, вероятно, играют, сверх того, некото­рую роль в качестве метеорологического фактора.

9. Фотоэлектрический эффект. Явление это, впервые тщательно изученное Столетовым, состоит, как теперь установлено, в сле­дующем: если на поверхность твердого или жидкого тела падает поток лучистой энергии, то при определенных условиях от поверх­ностного слоя этого тела отщепляются электроны, которые и попа­дают в окружающее пространство. Они в этом случае называются фотоэлектронами. Если освещать очень тонкую пластинку с од­ной стороны, то электроны вылетают и с противоположной сто-

 

 

роны. Условие возникновения фотоэлектрического эффекта заклю­чается в том, что не все лучи вызывают это явление и что пределы длин волн действующих лучей зависят от рода вещества, на по­верхность которого они падают. Наиболее активными, вообще го­воря, являются лучи малой длины волны (ультрафиолетовые и рент­геновы лучи), но щелочные металлы чувствительны и к видимым лучам, а при некоторых условиях — даже к инфракрасным лучам. Элементарный фотоэффект был тщательно изучен А. Ф. Иоффе, который действовал ультрафиолетовыми лучами на мельчайшие частицы твердых металлов и ртути, взвешенные в воздухе при наличии электрического поля и отчетливо наблюдал моменты от­щепления от этих частиц отдельных электронов. Несомненно, что отмеченное в пп. 1, 2 и 3 настоящего параграфа ионизирующее действие на газы рентгеновых и ультрафиолетовых лучей, а также gm-лучей, испускаемых радиоактивными веществами, относится к категории фотоэлектрических действий на отдельные моле­кулы газа.

10. Химические реакции. Во многих случаях химических и элек­трохимических реакций, при которых выделяются газы, эти последние оказываются в большей или меньшей степени ионизированными. Пример подобного явления мы имеем при электролизе водных растворов кислот и щелочей. Повидимому, к этой же группе явлений следует отнести и давно известный факт, что воздух, приходящий в соприкосновение с фосфором, весьма заметно проводит ток, т. е. ионизирован.

11. Деформирование поверхности жидкости и твердого тела в атмосфере газа. Описанный в § 77 опыт с устранением силь­ной ионизации воздуха при пропускании его мелкими пузырьками через воду, собственно говоря, не сопровождается полным исчез­новением ионизации. Она значительно ослабляется, но все же ос­тается больше естественной ионизации воздуха при нормальных условиях. Как показывают тщательные исследования, воздух в по­добных случаях получает добавочную ионизацию обычно не очень значительную. Кроме того, воздух оказывается обладающим избы­точной электризацией того или иного знака в зависимости от сте­пени чистоты воды и характера примесей к ней. К этой же группе явлений относится и обследованный впервые Ленардом факт иони­зации воздуха у подножия водопадов, на берегу моря в случае сильного прибоя и т. п. Во всех этих случаях также имеет место избыток ионов того или другого знака в зависимости от примесей к воде. Все рассмотренное здесь применительно к воде имеет от­ношение и к случаю ряда других жидкостей и, между прочим, к слу­чаю ртути. Вообще, по Дж. Дж. Томсону, всякое деформирование или нарушение поверхности жидкости и даже твердого тела может сопровождаться появлением ионов в окружающем газе. Следова­тельно, испарение жидкости и, в особенности, малых ее капель, повидимому, в некоторых случаях может порождать газовые ионы. Значение всего, сказанного в этом пункте, для области атмосфер­ного электричества совершенно очевидно.

 

 

12. Ионная бомбардировка. Если у поверхности твердого или жидкого тела нормальная составляющая электрической силы имеет достаточно большое значение, то находящиеся в окружающем газе ионы соответствующего знака, приобретя скорость, превышающую некоторый предел, и ударяясь об эту поверхность, могут, как по­казывает опыт, выбивать из данного вещества электроны. Эти осво­божденные электроны переходят в окружающую газовую среду, уве­личивая в ней число носителей электричества, т. е. ионов. Подобная ионная бомбардировка возможна и в том случае, когда ионы при­обретут достаточную кинетическую энергию и вдали от рассматри­ваемой поверхности, двигаясь далее по инерции. Отрицательный холодный электрод, находящийся в ионизированной газовой среде, будет испытывать бомбардировку со стороны тяжелых положитель­ных ионов, и при этом его поверхность может начать испускать поток электронов. Электроны, ударяющиеся с достаточною скоростью о поверхность находящегося на их пути тела, могут вызвать выде­ление с поверхности его так называемых вторичных электронов. Сказанное в настоящем п. 12 имеет тесную связь с содержанием п. 7 данного параграфа.

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА III Электрическое смещение

На сайте allrefs.net читайте: "ГЛАВА III Электрическое смещение"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Ионизирующие агенты.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика электромагнитных процессов.
В предыдущих главах мы коснулись одной стороны электромаг­нитных явлений, а именно, рассмотрели некоторые общие свойства магнитного потока и магнитного поля. Теперь сосредоточим наше внимание на др

Электрическое смещение. Основные положения Максвелла.
Известно, что между заряженными телами создается электрическое поле. Это поле деформирует диэлектрик, приводит его в некоторое напряженное состояние, называемое обычно электрической поляризацией

Мера электрического смещения.
Допустим, что мы имеем некоторый диэлектрик, и пусть действующая в нем в точке А электрическая сила Б направлена, как указано стрелкой (рис. 105).

Ток смещения.
Когда мы говорим об электрическом смещении, не следует, во­обще говоря, смешивать этого понятия с электрическим током. Термин „электрическое смещение" мы должны понимать как меру деформации, п

Теорема Максвелла.
Представим себе замкнутую поверхность s, внутри которой как-либо распределены электрические заряды q1,q2, q3 и т. д. Пусть ds представля

Природа электрического смещения.
Максвелл в своих рассуждениях относительно электрического смещения совершенно не касается природы электричества и того, как надо понимать его движение. Все это не имеет значения в фор­мальных постр

Формулировки.
Возвратимся к формулировке теоремы Максвелла: Взяв от обеих частей этого равенства производную по s, получим:

Механическая аналогия.
Остановимся теперь на одной простой механической схеме с целью лучшего уяснения принципа замкнутости тока, а также для того, чтобы наглядно показать значение введенного Максвеллом в науку представл

Непрерывность тока в случае электрической конвекции.
Переход электричества из одного места в другое путем движе­ния заряженных тел вообще и, в частности, заряженных элемен­тарных частиц называется электрической конвекцией и предста­вляет собою

Связь электрического поля с электромагнитными процес­сами. Область электростатики.
В самом начале предыдущей главы (§ 45) мы касались в общих чертах вопроса об электрическом поле и указывали, что его сле­дует рассматривать как одну из сторон того основного электро­магнитного проц

Закон Кулона и вытекающие из него определения и соотношения.
В настоящем параграфе мы даем краткую сводку основных определений и соотношений, относящихся к электрическому полю я вытекающих из закона Кулона. В первую очередь, конечно, напомним формулировку эт

Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
Рассмотрим в некотором электрическом поле две точки, А и В. Линейный интеграл электрической силы вдоль некоторого пути перехода от точки А к точке В, т. е.:

Электрическая деформация среды.
С точки зрения Фарадея и Максвелла, участие промежу­точной среды в передаче электрических действий от одного наэлек­тризованного тела к другому, а также во всех вообще процессах, совершающихся в эл

Линии смещения.
Линиями электрического смещения, или просто линиями сме­щения называются такие линии, построенные в электрическом поле, все элементы которых совпадают по направлению с векторами

Трубка смещения.
Трубкою смещения называется объем диэлектрика имеющий форму трубки, образующими которой служат линии смещения. Рассмотрим некоторую трубку смещения в промежутке между двумя наэлектр

Фарадеевские трубки.
В связи с тем, что было изложено в предыдущем параграфе об особых свойствах трубок смещения, оказывается целесообразным так подбирать размеры этих трубок, чтобы величина полного элек­трического сме

Фарадеевская трубка и количество электричества, с нею связанное.
В дальнейшем мы будем мыслить все электрическое поле за­полненным фарадеевскими трубками. Совершенно подобно тому, как это было в случае магнитного поля в отношении магнитных линий, можно рассматри

Вторая формулировка теоремы Максвелла.
Так как электрическое смещение сквозь поперечное сечение фарадеевской трубки равно единице, то, следовательно, каждая такая трубка, пересекая некоторую поверхность, привносит в вели­чину полного эл

Электризация через влияние. Теорема Фарадея.
Так называемая электризация через влияние, т. е. возникновение электрических зарядов на нейтральном до того проводящем теле в случае поднесения его к какому-либо другому заряженному телу, представл

Энергия электрического поля.
Выше было в достаточной степени выяснено (§§ 1 и 47), что, согласно воззрениям Фарадея и Максвелла, в пространстве, в котором существует электрическое поле, среда находится в особом вынужденном сос

Механические проявления электрического поля.
Механические взаимодействия, наблюдаемые в электрическом поле между наэлектризованными телами и формально описываемые при помощи закона Кулона, могут быть объяснены, с точки зрения &nbs

Преломление фарадеевских трубок.
При переходе фарадеевских трубок (и вообще линий смещения) из одной диэлектрической среды в другую обычно мы имеем дело с изменением направления у са­мой поверхности раздела ди­электриков. Это явле

Электроемкость и диэлектрическая постоянная.
Допустим, что потенциал какого-либо проводящего тела есть U, а потенциалы всех других проводников, находящихся в электриче­ском поле, равны нулю. В этом случае между потенциалом данного тела

Свойства диэлектриков.
В заключение настоящей главы мы дадим краткий обзор неко­торых основных свойств изолирующих материалов (диэлектриков): а) Диэлектрическая постоянная e. Она является главной ха­ракте

Общие соображения о природе тока.
В настоящей главе мы в самых общих чертах ознакомимся с современным состоянием вопроса о природе электрического тока. Хотя вопрос этот по существу относится к области чистой физики, однако,

Движение электричества внутри проводников.
Шестьдесят лет тому назад, говоря об электрическом токе как о явлении кинетического характера, Максвелл не мог не отме­тить того обстоятельства, что он ничего больше не в состоянии сказать о природ

Участие электрического поля в процессе электрического тока.
Основная мысль Фарадея относительно роли проводника, по которому течет ток, заключается, как было отмечено в предыдущем параграфе, в том, что проводник служит своего рода осью, вокруг которой надле

Участие магнитного поля в процессе электрического тока.
Представление о механизме того процесса, который происходит в пространстве вокруг проводника с током и который органически связан с магнитным полем, можно получить из картины преобразо-

Общие соображения.
В предыдущей главе мыпознакомились с общей характеристи­кой того сложного электромагнитного комплекса, который воспри­нимается нами, как электрический ток. Мы видели, что основной

Заряд и масса иона.
Из сказанного в предыдущих параграфах следует прежде всего, что заряды, несомые положительными и отрицательными ионами, бу­дучи обратными по знаку, должны быть тождественными по абсо­лютной величин

Влияние давления газа на характер разряда.
Общий характер явлений, наблюдаемых при прохождении элек­трического тока через газ, т. е. при так называемом разряде через газ, зависит от целого ряда обстоятельств, как это уже отчасти должно быть

При атмосферном давлении.
Остановимся теперь на случае прохождения электрического тока через газ при атмосферном давлении. Ради простоты предпо­ложим, что мы имеем дело с воздухом. Представим себе (рис. 134) некоторый генер

Основные соотношения, характеризующие ток через газы.
Обратимся к схеме, изображенной на рис. 134, и допустим, что газ в промежутке между электродами В к С ионизируется не­которым неизменно действующим агентом, интенсивность которого будем хара

Тихий разряд. Корона.
Как уже было разъяснено выше (см. §§ 78, 81 и 82), стадия тихого разряда через газы возникает всякий раз, когда электриче­ская сила достигает такого значения, при котором начинается иони­зация газа

Разрывной разряд.
Интенсивная ионизация газа под влиянием сильного электриче­ского поля, характеризующая стадию тихого разряда, может, как мы знаем, завершаться разрывным разрядом, если только в системе нет ограниче

Вольтова дуга.
Мы уже имелислучай указывать выше (см. § 81), что при достаточной мощности генератора, питающего цепь, и при доста­точно малом общем сопротивлении цепи — разряд через газообраз­ную среду между двум

Дуговые выпрямители.
Дуговые выпрямители основаны на использовании неодинако­вой роли положительного и отрицательного электродов вольтовой дуги. В то время, как положительный электрод играет пассивную роль в осн

Давлениях.
В случаях, когда стадия „тихого разряда" (см. § 81) имеет место в газообразной среде при достаточной степени разряжения (порядка 0,1 мм ртутного столба), с большой отчетливостью вы­явля

Прохождение электрического тока через пустоту.
Если в условиях опыта, о котором мы говорили в конце преды­дущего параграфа, после достижения стадии развития катодных лучей при высоком разрежении газа мы будем продолжать откачи­вать газ, достига

Пустотные электрон­ные приборы.
При практическом исполь­зовании накаленного катода для проведения электриче­ского тока через пустотные приборы в настоящее время применяются самые разно­образные конструкции катода и самые разнообр

Основные положения Максвелла.
Настоящая глава посвящена изучению всякого рода динамиче­ских проявлений того электромагнитного процесса, который про­исходит в системе электрических токов. Мы будем при этом следовать пути, которы

Вторая форма уравнений Лагранжа.
Обоснование положения, что электрический ток есть явление кинетического характера, позволило Максвеллу дать стройное математическое исследование этого явления с помощью второй формы уравнений Лагра

Координатах.
Так как обобщенные координаты, как было выше указано, вполне определяют положение всех частей системы, то они должны быть связаны некоторыми зависимостями с декартовыми координатами всех точек сист

Выбор обобщенных координат для электродинамической системы.
Всякая электродинамическая система, вообще говоря, предста­вляет собою совокупность проводящих цепей, по которым проте­кают электрические токи, т. е. механическую систему, совмещенную с системой эл

Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
По аналитическому строению выражения для кинетической энергии (Т) электродинамической системы можно судить и о фи­зическом характере этой энергии. В самом деле, выражение для кинетической эн

Общее обследование сил, действующих в электродинами­ческой системе.
При наличии в системе процессов механических и электриче­ских мы должны иметь в виду соответственно два рода сил: силы механические и силы электродвижущие. Если известна полная кинетическая энергия

Электрокинетическая энергия.
После общего обследования всех сил, могущих обнаруживаться в системе проводников с токами, сосредоточим наше внимание на электрокинетической энергии Te и рассмотрим более подробно

Электродвижущая сила самоиндукции.
Рассмотрим сначала простейшую систему, состоящую из одного проводящего контура (рис. 153). Если к этому контуру п

Коэффициент самоиндукции.
Для количественного определения коэффициента самоиндукции некоторого контура мыможем воспользоваться любым из соотно­шений, характеризующих в той или иной степени электрокинетическ

Электродвижущая сила взаимной индукции.
Остановимся теперь на рассмотрении системы, состоящей из каких-либо двух проводящих цепей, по которым протекают элек­трические токи i1 и i2 (рис. 158).

Коэффициент взаимной индукции.
Совершенно подобно тому, что мы имели при определении коэффициента самоиндукции (см. соотношения 85 — 89 в § 99), и в случае количественного определения коэффициента взаимной индукции мы, вообще го

Индукции.
Обследуем теперь некоторые количественные соотношения между коэффициентами L1, L2 и М. Будем исходить из основного выраже­ния для электрокинетической энер

Общие выражения для магнитных потоков, сцепляю­щихся с отдельными контурами системы.
Рассмотрим теперь самый общий случай системы из n электри­ческих цепей. В этом случае, т. е. при наличии любого числа отдельных цепей, мы имеем:

Общие выражения для электродвижущих сил, индукти­руемых в отдельных цепях системы.
На основании всего вышеизложенного мы можем, подводя итоги, написать ряд нижеследующих соотношений для электродвижущих сил, индуктируемых в отдельных цепях рассматриваемой системы:

Роль короткозамкнутой вторичной цепи.
При рассмотрении явлений самоиндукции и взаимной индукции мы видели, что величина полной ЭДС, возникающей в некотором проводящем контуре в качестве реакции на производимое изменение общих электрома

Действующие коэффициенты самоиндукции и взаимной индукции.
Выше было в достаточной степени разъяснено, что коэффициент самоиндукции цепи есть функция исключительно геометрических размеров контура данной цепи. Приведенные выше примеры под­тверждают это поло

Электромагнитная сила. Общие соображения.
При анализе связи между кинетической энергией, присущей элек­тродинамической системе, и силами, возникающими в такой системе, было получено (см, § 96) общее выражение для так называемой э

Условия возникновения электромагнитной силы.
Рассмотрим некоторый круговой контур (рис. 164), по которому идет постоянный ток, поддерживаемый с помощью внешнего источ­ника.

Случай сверхпроводящнх контуров.
Для иллюстрации только-что сказанного рассмотрим некоторые случаи, когда токи в системе не сохраняются постоянными. В этом отношении особенный интерес представляют случаи сверхпроводящих цепей, соп

Случай контура с током во внешней магнитном поле.
Рассмотрим еще один пример, именно, движение контура во внешнем постоянном магнитной поле. Допустим, для простоты, что это поле создается постоянным магнитом NS (рисунки 167, 168, 169), а ко

Основная роль бокового распора и продольного тяжения магнитных линий.
Из рассмотренных нами примеров ясно, что все приведенные выше формулировки закона движений в электродинамической системе по существу являются именно лишь различными формулировками одного и того

Случай прямолинейного проводника во внешнем магнит­ном поле.
Однако, иногда применяется и другой подход к анализу и ра­счету сил, действующих в электромагнитных механизмах. Именно, иногда исходят из рассмотрения сил действующих на отдельный участок пр

Электромагнитные взаимодействия в асинхронном двигателе.
При совершенной справедливости формулировки, говорящей о стремлении всякого контура с током охватить наибольший внеш­ний поток, интересно отметить, что в некоторых практических случаях это стремлен

Величина и направление электромагнитной силы в случае одного контура с током.
Рассмотрев физическую природу явления возникновения дви­жений в электродинамической системе, обратимся к определению величины и направления электромагнитной силы в различных ча­стных случаях.

Величина и направление силы электромагнитного взаимо­действия двух контуров с током.
Рассмотрим теперь случай двух контуров, по которым проте­кают токи i1 и i2. Электрокинетическая анергия такой системы определяется выражением:

Контуров с током.
Обратимся к общему случаю системы, состоящей из произволь­ного числа контуров. Электрокинетическая энергия системы равна:

Электромагнитная сила, дей­ствующая на участок проводника с током, расположенный во внешней магнитном поле.
В тех случаях, когда вычисление внешнего потока, связанного с данным контуром, а следовательно, и опреде­ление приращения этого потока, оказывается затруднительным, удобнее пользоваться выражением,

Электромагнитное поле.
В главе III (§ 45) было уже указано, что явления электрического поля и явления магнитного поля ни в коем случае не следует рас­сматривать как совершенно самостоятельные совокупности явлений. Мы име

Основные уравнения электромагнитного поля.
Обратимся к выводу основных соотношений, характеризующих явления электромагнитного поля. Исходным пунктом этого вывода служат два соотношения, уже известные из предыдущих глав, именно? закон магнит

Распространение электромагнитной энергии.
Уравнения (133) и (134) по существу являются общим математическим выражением того факта, что при одновременном существовании взаимно связанных электрического и магнитного полей, т. е. при существов

Опытные данные, подтверждающие теорию Максвелла.
Переходя к вопросу об экспериментальном подтверждении уста­новленных Максвеллом законов распространения электромагнитной энергии, следует отметить, что соответствующий опытный материал настолько ве

Опыты Герца.
Как уже сказано в предыдущем параграфе, экспериментальные подтверждения теории Максвелла представлены в настоящее время в виде всех достижений радиотехники таким количеством материала, что доказыва

Пойнтинга.
Вопрос о механизме распространения электромагнитных воз­мущений и связанного с этим движения электромагнитной энергии представляет глубокий интерес. На этом предмете останавливали свое внимание мно

Распространение тока в металлических массах. Поверхностный аффект.
В предыдущих параграфах настоящей главы были обследованы общие законы распространения электромагнитной энергии. Остано­вимся теперь на более детальном рассмотрении процесса движения энергии в прово

Размерности электрических в магнитных величин.
1. Всякое электрическое и магнитное количество может быть выражено при посредстве основных единиц длины, массы и времени и специальных коэффициентов — диэлектрической постоянной e и магнитной прони

Предметный указатель.
Абсолютная электромагнитная еди­ница: количества электричества 193, коэффициента взаимной индукции 354, коэффициента самоиндукции 342,343, магнитного потока 47,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги